A249009 a(n+1) gives the number of occurrences of the first digit of a(n) so far, up to and including a(n), with a(0)=0.
0, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 2, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 21, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 10, 23, 5, 5, 6, 5, 7, 5, 8, 5, 9, 5, 10, 24, 6, 6, 7, 6, 8, 6, 9, 6, 10
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Alois P. Heinz, Graph of 10^6 terms
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, coeff(b(n-1), x, convert(a(n-1), base, 10)[-1] )) end: b:= proc(n) option remember; `if`(n=0, 1, b(n-1)+ add(x^i, i=convert(a(n), base, 10))) end: seq(a(n), n=0..120);
-
Python
from itertools import islice def A249009_gen(): # generator of terms c, clist = 0, [1]+[0]*9 while True: yield c c = clist[int(str(c)[0])] for d in str(c): clist[int(d)] += 1 A249009_list = list(islice(A249009_gen(),100)) # Chai Wah Wu, Dec 13 2022
Comments