A249026 Array read by antidiagonals upwards: T(d,n) = number of d-dimensional permutations of n letters (d >= 0, n >= 1).
1, 1, 2, 1, 2, 3, 1, 2, 6, 4, 1, 2, 12, 24, 5, 1, 2, 24, 576, 120, 6, 1, 2, 48, 55296, 161280, 720, 7, 1, 2, 96, 36972288, 2781803520, 812851200, 5040, 8, 1, 2, 192, 6268637952000, 52260618977280, 994393803303936000, 61479419904000, 40320, 9
Offset: 0
Examples
The array begins: d\n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, -------------------------------------------------------------- 0: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, ... 2: 1, 2, 12, 576, 161280, 812851200, 61479419904000, 108776032459082956800,... 3: 1, 2, 24, 55296, 2781803520, 994393803303936000, ... 4: 1, 2, 48, 36972288, 52260618977280, ... 5: 1, 2, 96, 6268637952000, 2010196727432478720, ... 6: 1, 2, 192, ... 7: 1, 2, 384, ... 8: 1, 2, 768, ... ...
Links
- Linial, Nathan, and Zur Luria, An upper bound on the number of high-dimensional permutations, arXiv preprint arXiv:1106.0649 [math.CO], (2011).
- Linial, Nathan, and Zur Luria, An upper bound on the number of high-dimensional permutations, Combinatorica, 34 (2014), 471-486.
Comments