A249031 The non-anti-Fibonacci numbers: numbers not in A075326.
1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 68, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 99, 100
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Wieb Bosma, Rene Bruin, Robbert Fokkink, Jonathan Grube, Anniek Reuijl, and Thian Tromp, Using Walnut to solve problems from the OEIS, arXiv:2503.04122 [math.NT], 2025. See p. 7.
- Robbert Fokkink and Gandhar Joshi, Anti-recurrence sequences, arXiv:2506.13337 [math.NT], 2025. See p. 4.
- D. R. Hofstadter, Anti-Fibonacci numbers, Oct 23 2014
- Thomas Zaslavsky, Anti-Fibonacci Numbers: A Formula, Sep 26 2016
Programs
-
Haskell
import Data.List ((\\)) a249031 n = a249031_list !! (n-1) a249031_list = f [1..] where f ws@(u:v:_) = u : v : f (ws \\ [u, v, u + v]) -- Reinhard Zumkeller, Oct 26 2014
-
Python
def A249031(n): return n+(n+1-(m:=n-3&7)>>2)+int(m>=4 and (m!=4 or (~((k:=n-3>>3)+1)&k).bit_length()&1)) # Chai Wah Wu, Sep 11 2024