A249039 a(1)=1, a(2)=2; thereafter a(n) = a(n-1) + a(n-1-(number of even terms so far)) + a(n-1-(number of odd terms so far)).
1, 2, 4, 7, 11, 17, 26, 37, 52, 70, 92, 120, 157, 200, 254, 323, 401, 490, 597, 719, 859, 1021, 1211, 1438, 1687, 1979, 2325, 2740, 3183, 3704, 4262, 4863, 5553, 6350, 7201, 8174, 9216, 10336, 11545, 12894, 14350, 15928, 17646, 19526, 21596, 23893, 26352, 29060, 32060, 35406, 39167
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.List (genericIndex) a249039 n = genericIndex a249039_list (n - 1) a249039_list = 1 : 2 : f 2 2 1 1 where f x u v w = y : f (x + 1) y (v + 1 - mod y 2) (w + mod y 2) where y = u + a249039 (x - v) + a249039 (x - w) -- Reinhard Zumkeller, Nov 11 2014
-
Maple
M:=100; v[1]:=1; v[2]:=2; w[1]:=0; w[2]:=1; x[1]:=1; x[2]:=1; for n from 3 to M do v[n]:=v[n-1]+v[n-1-w[n-1]]+v[n-1-x[n-1]]; if v[n] mod 2 = 0 then w[n]:=w[n-1]+1; x[n]:=x[n-1]; else w[n]:=w[n-1]; x[n]:=x[n-1]+1; fi; od: [seq(v[n], n=1..M)]; # A249039 [seq(w[n], n=1..M)]; # A249040 [seq(x[n], n=1..M)]; # A249041
Formula
For n > 1: a(n+1) = a(n) + a(n - A249040(n)) + a(n - A249041(n)) by mutual recursion. - Reinhard Zumkeller, Nov 11 2014
Comments