cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249062 A double binomial sum.

Original entry on oeis.org

1, 2, 5, 18, 69, 306, 1497, 7890, 45033, 273474, 1760301, 11961522, 85265325, 636026418, 4947725889, 40019230386, 335868650577, 2918173355010, 26199114476373, 242657102748114, 2314964975130261, 22717352863875762, 229029972003647145, 2369438933865972498
Offset: 0

Views

Author

Emanuele Munarini, Oct 20 2014

Keywords

Crossrefs

Cf. A049425.

Programs

  • Mathematica
    AList[n_] := CoefficientList[Series[(1 + t) E^(t + t^2 + t^3/3), {t, 0, n}], t] Table[k!, {k, 0, n}]
    AList[100]
  • Maxima
    a(n) := sum((n!/k!)*sum(binomial(k,i)*binomial(k-i+1,n-k-2*i)/3^i,i,0,k),k,0,n);
    makelist(a(n),n,0,24);

Formula

a(n) = sum((n!/k!)*sum(bin(k,i)*bin(k-i+1,n-k-2*i)/3^i,i=0..k),k=0..n).
E.g.f.: (1+t)*exp(t+t^2+t^3/3).
a(n+4)+(n+1)*a(n+3)-3*(n+3)*a(n+2)-3*(n+3)*(n+2)*a(n+1)-(n+3)*(n+2)*(n+1)*a(n)=0.