A249076 a(n) = (n*(n+1))^6.
0, 64, 46656, 2985984, 64000000, 729000000, 5489031744, 30840979456, 139314069504, 531441000000, 1771561000000, 5289852801024, 14412774445056, 36343632130624, 85766121000000, 191102976000000, 404961208827904, 820972403643456, 1600135042849344, 3010936384000000, 5489031744000000
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
Magma
[(n*(n+1))^6: n in [0..30]];
-
Maple
[ seq(n^6*(n+1)^6, n = 0..100) ];
-
Mathematica
Table[(n (n + 1))^6, {n, 0, 70}] (* or *) CoefficientList[Series[64*x*(x^10 + 716 x^9 + 37257 x^8 + 450048 x^7 + 1822014 x^6 + 2864328 x^5 + 1822014 x^4 + 450048 x^3 + 37257 x^2 + 716 x + 1)/(1 - x)^13, {x, 0, 30}], x]
-
PARI
a(n)=(n*(n+1))^6 \\ Charles R Greathouse IV, Oct 21 2014
Formula
a(n) = A002378(n)^6.
a(n) = 64*A059978(n) for n>0.
G.f.: 64*x*(x^10 + 716*x^9 + 37257*x^8 + 450048*x^7 + 1822014*x^6 + 2864328*x^5 + 1822014*x^4 + 450048*x^3 + 37257*x^2 + 716*x + 1)/(1 - x)^13. [corrected by Georg Fischer, May 10 2019]
Sum_{n>=1} 1/a(n) = -462 + 42*Pi^2 + 7*Pi^4/15 + 2*Pi^6/945. - Vaclav Kotesovec, Sep 25 2019
Extensions
Incorrect term corrected by Colin Barker, Oct 21 2014
Terms a(21) and beyond corrected by Andrew Howroyd, Feb 22 2018