A249077 Primes of the form n^2 + k such that n^2 - k is also prime, where -n < k < n.
3, 5, 7, 11, 13, 19, 31, 41, 61, 67, 73, 79, 83, 89, 97, 103, 137, 139, 149, 151, 157, 181, 193, 199, 211, 223, 227, 239, 241, 271, 311, 317, 331, 337, 349, 373, 421, 433, 439, 443, 449, 461, 607, 619, 631, 643, 661, 691, 719, 739, 757, 811, 823, 829, 853, 859
Offset: 1
Keywords
Examples
2^2-1=3, 2^2+1=5, both prime. 8^2-3=61, 8^2+3=67, both prime.
Programs
-
Magma
lst:=[]; for m in [1..28] do r:=m*(m+1)+1; s:=(m+1)^2; for a in [r..s-1] do if IsPrime(a) then b:=2*s-a; if IsPrime(b) then Append(~lst, a); Append(~lst, b); end if; end if; end for; end for; Sort(lst);
-
Maple
g:= proc(t,m) if isprime(m+t) and isprime(m-t) then (m+t,m-t) else NULL fi end proc: `union`(seq(map(g,{$1..n-1},n^2),n=2..100)); # if using Maple 11 or earlier, uncomment the next line # sort(convert(%,list)); # Robert Israel, Oct 31 2014
-
PARI
for(n=1, 859, if(issquare(n), x=ps=n; until(issquare(x), x++); ns=x); if(isprime(n), if(n-ps
Formula
A prime p is in the sequence if and only if 2*A053187(p)-p is prime.
Comments