cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249101 p(n,1), where p(n,x) is defined in Comments; sum of numbers in row n of the array at A249100.

Original entry on oeis.org

1, 4, 9, 37, 118, 525, 2059, 9934, 44937, 233683, 1177360, 6552069, 35986069, 212891932, 1256487933, 7856137825, 49320239614, 324285063489, 2149133929207, 14796251405278, 102910742502765, 739149552929719, 5370132965554144, 40110161953250937
Offset: 1

Views

Author

Clark Kimberling, Oct 21 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (2*n - 1)/f(n-1,x), where f(1,x) = 1.

Examples

			First 3 rows from A249100:
  1;
  3,  1;
  5,  3,  1;
so that the first 3 terms of A249101 are 1, 4, 9.
		

Crossrefs

Cf. A249100.

Programs

  • Mathematica
    z = 11; p[n_, x_] := x + (2 n - 1)/p[n-1,x]; p[1,x_] = 1;
    t = Table[Factor[p[n,x]], {n, 1, z}]
    u = Numerator[t]; v = u /. x -> 1  (* A249101 *)
    a[ n_] := (a[n] = If[n<2, Boole[n>=0], a[n-1] + (2*n-1)*a[n-2]]); (* Michael Somos, Oct 27 2022 *)
  • PARI
    {a(n) = if(n<2, n>=0, a(n-1) + (2*n-1)*a(n-2))}; /* Michael Somos, Oct 27 2022 */

Formula

a(n) = a(n-1) + (2*n-1)*a(n-2), a(0) = a(1) = 1. - Michael Somos, Oct 27 2022