A249106
Numbers that form a Pythagorean 6-tuple with their first four arithmetic derivatives.
Original entry on oeis.org
19164, 129357, 14971875, 45316123, 434325391
Offset: 1
First four arithmetic derivatives of 19164 are 25564, 31848, 58412, 61916 and sqrt(19164^2 + 25564^2 + 31848^2 + 58412^2 + 61916^2) = 96336.
-
with(numtheory);
Dr:=proc(w) local x,p; x:=w*add(op(2,p)/op(1,p),p=ifactors(w)[2]); end:
P:=proc(q,h) local a,b,k,n; for n from 2 to q do a:=n; b:=n^2;
for k from 1 to h do a:=Dr(a); b:=b+a^2; od; if type(sqrt(b),integer) then print(n);
fi; od; end: P(10^9,4);
A249107
Numbers that form a Pythagorean 7-tuple with their first five arithmetic derivatives.
Original entry on oeis.org
4031, 10823, 416959, 496939, 1354980, 9146115, 38949392, 44472866, 262908396, 380264131
Offset: 1
First five arithmetic derivatives of 4031 are 168, 332, 336, 832, 2560 and sqrt(4031^2 + 168^2 + 332^2 + 336^2 + 832^2 + 2560^2) = 4873.
-
with(numtheory);
Dr:=proc(w) local x,p; x:=w*add(op(2,p)/op(1,p),p=ifactors(w)[2]); end:
P:=proc(q,h) local a,b,k,n; for n from 2 to q do a:=n; b:=n^2;
for k from 1 to h do a:=Dr(a); b:=b+a^2; od; if type(sqrt(b),integer) then print(n);
fi; od; end: P(10^9,5);
A249110
Numbers that form a Pythagorean 10-tuple with their first eight arithmetic derivatives.
Original entry on oeis.org
4, 27, 3125, 398747, 823543
Offset: 1
First eight arithmetic derivatives of 398747 are 1692, 2856, 5812, 5816, 8732, 9116, 9500, 15700 and sqrt(398747^2 + 1692^2 + 2856^2 + 5812^2 + 5816^2 + 8732^2 + 9116^2 + 9500^2 + 15700^2) = 399467.
-
with(numtheory);
Dr:=proc(w) local x,p; x:=w*add(op(2,p)/op(1,p),p=ifactors(w)[2]); end:
P:=proc(q,h) local a,b,k,n; for n from 2 to q do a:=n; b:=n^2;
for k from 1 to h do a:=Dr(a); b:=b+a^2; od; if type(sqrt(b),integer) then print(n);
fi; od; end: P(10^9,8);
Showing 1-3 of 3 results.
Comments