cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249115 Floor(r*n), where r = (5 - sqrt(5))/2; the Beatty complement of A003231.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44, 45, 46, 48, 49, 51, 52, 53, 55, 56, 58, 59, 60, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 76, 77, 78, 80, 81, 82, 84, 85, 87, 88, 89, 91
Offset: 1

Views

Author

Clark Kimberling, Oct 21 2014

Keywords

Comments

Let r = (5 - sqrt(5))/2 and s = (5 + sqrt(5))/2. Then 1/r + 1/s = 1, so that A249115 and A003231 are a pair of complementary Beatty sequences. Let tau = (1 + sqrt(5))/2, the golden ratio. Let R = {h*tau, h >= 1} and S = {k*(tau - 1), k >= 1}. Then A249115(n) is the position of n*(tau - 1) in the ordered union of R and S.

Crossrefs

Programs

  • Magma
    [Floor(n*(5-Sqrt(5))/2): n in [1..100]]; // Vincenzo Librandi, Oct 25 2014
  • Mathematica
    Table[Floor[(5 - Sqrt[5])/2*n], {n, 1, 200}]