A249120 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers of A210843 multiplied by A000330(k), and the first element of column k is in row A000217(k).
1, 4, 13, 5, 35, 20, 86, 65, 194, 175, 14, 415, 430, 56, 844, 970, 182, 1654, 2075, 490, 3133, 4220, 1204, 30, 5773, 8270, 2716, 120, 10372, 15665, 5810, 390, 18240, 28865, 11816, 1050, 31449, 51860, 23156, 2580, 53292, 91200, 43862, 5820, 55, 88873, 157245, 80822, 12450, 220, 146095, 266460, 145208, 25320, 715
Offset: 1
Examples
Triangle begins: 1; 4; 13, 5; 35, 20; 86, 65; 194, 175, 14; 415, 430, 56; 844, 970, 182; 1654, 2075, 490; 3133, 4220, 1204, 30; 5773, 8270, 2716, 120; 10372, 15665, 5810, 390; 18240, 28865, 11816, 1050; 31449, 51860, 23156, 2580; 53292, 91200, 43862, 5820, 55; 88873, 157245, 80822, 12450, 220; 146095, 266460, 145208, 25320, 715; 236977, 444365, 255360, 49620, 1925; 379746, 730475, 440286, 93990, 4730; 601656, 1184885, 746088, 173190, 10670; 943305, 1898730, 1244222, 311160, 22825, 91; ... For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 194, 175, 14, so the alternating row sum is 194 - 175 + 14 = 33, equaling the sum of all divisors of all positive integers <= 6.
Comments