A249123 Position of n^6 in the ordered union of {h^6, h >= 1} and {2*k^6, k >= 1}.
1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 35, 37, 39, 41, 43, 45, 47, 49, 51, 52, 54, 56, 58, 60, 62, 64, 66, 68, 69, 71, 73, 75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 96, 98, 100, 102, 103, 105, 107, 109, 111, 113, 115, 117, 119
Offset: 1
Examples
{h^6, h >= 1} = {1, 64, 729, 4096, 15625, 46656, 117649, ...}; {2*k^6, k >= 1} = {2, 128, 1458, 8192, 31250, 93312, ...}; so the ordered union is {1, 2, 64, 128, 729, 1458, 4096, 8192, 15625, ...}, and a(2) = 3 because 2^6 is in position 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
Res:= NULL: count:= 0: a:= 1: b:= 1: for pos from 1 while count < 100 do if a^6 < 2*b^6 then Res:= Res, pos; count:= count+1; a:= a+1 else b:= b+1 fi od: Res; # Robert Israel, Aug 11 2019
-
Mathematica
z = 200; s = Table[h^6, {h, 1, z}]; t = Table[2*k^6, {k, 1, z}]; u = Union[s, t]; v = Sort[u] (* A249073 *) m = Min[120, Position[v, 2*z^2]] Flatten[Table[Flatten[Position[v, s[[n]]]], {n, 1, m}]] (* A249123 *) Flatten[Table[Flatten[Position[v, t[[n]]]], {n, 1, m}]] (* A249124 *)
-
PARI
a(n) = n + sqrtnint(((n^6) \ 2), 6) \\ David A. Corneth, Aug 11 2019
Formula
a(n) = n + floor(2^(-1/6)*n). - Robert Israel, Aug 12 2019
Comments