A249124 Position of 2*n^6 in the ordered union of {h^6, h >= 1} and {2*k^6, k >= 1}.
2, 4, 6, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36, 38, 40, 42, 44, 46, 48, 50, 53, 55, 57, 59, 61, 63, 65, 67, 70, 72, 74, 76, 78, 80, 82, 84, 87, 89, 91, 93, 95, 97, 99, 101, 104, 106, 108, 110, 112, 114, 116, 118, 120, 123, 125, 127, 129, 131
Offset: 1
Examples
{h^6, h >= 1} = {1, 64, 729, 4096, 15625, 46656, 117649, ...}; {2*k^6, k >= 1} = {2, 128, 1458, 8192, 31250, 93312, ...}; so the ordered union is {1, 2, 64, 128, 729, 1458, 4096, 8192, 15625, ...}, and a(2) = 4 because 2*2^6 is in position 4.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 200; s = Table[h^6, {h, 1, z}]; t = Table[2*k^6, {k, 1, z}]; u = Union[s, t]; v = Sort[u] (* A249073 *) m = Min[120, Position[v, 2*z^2]] Flatten[Table[Flatten[Position[v, s[[n]]]], {n, 1, m}]] (* A249123 *) Flatten[Table[Flatten[Position[v, t[[n]]]], {n, 1, m}]] (* A249124 *)
-
PARI
a(n) = n + sqrtnint(2*n^6, 6) \\ David A. Corneth, Aug 11 2019
Formula
a(n) = n + floor( (2*n^6)^(1/6) ). - David A. Corneth, Aug 11 2019
Comments