cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249127 a(n) = n * floor(3*n/2).

Original entry on oeis.org

0, 1, 6, 12, 24, 35, 54, 70, 96, 117, 150, 176, 216, 247, 294, 330, 384, 425, 486, 532, 600, 651, 726, 782, 864, 925, 1014, 1080, 1176, 1247, 1350, 1426, 1536, 1617, 1734, 1820, 1944, 2035, 2166, 2262, 2400, 2501, 2646, 2752, 2904, 3015, 3174, 3290, 3456, 3577, 3750, 3876, 4056, 4187, 4374, 4510
Offset: 0

Views

Author

Karl V. Keller, Jr., Oct 21 2014

Keywords

Comments

Union of A033570, that is (2*n+1)*(3*n+1), and A033581, that is 6*n^2.

Examples

			For n=5, a(n) = 5*floor(15/2) = 5*7 = 35.
		

Crossrefs

Cf. A032766, A033581 (6*n^2), A033570 (2*n+1)*(3*n+1), A001318 (n*(3*n-1)/2).

Programs

  • Magma
    [n*Floor(3*n/2): n in [0..60]]; // Vincenzo Librandi, Oct 22 2014
    
  • Maple
    seq(n*floor(3*n/2), n=0..100); # Robert Israel, Oct 26 2014
  • Mathematica
    Table[n Floor[3 n/2], {n, 0, 100}] (* Vincenzo Librandi, Oct 22 2014 *)
  • PARI
    a(n)=3*n\2*n \\ Charles R Greathouse IV, Oct 21 2014
    
  • PARI
    concat(0, Vec(-x*(2*x^3+4*x^2+5*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, Oct 22 2014
  • Python
    from math import *
    {print(int(n*floor(3*n/2)),end=', ') for n in range(101)}
    

Formula

a(n) = n * floor(3n/2) = n * A032766(n).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Colin Barker, Oct 22 2014
G.f.: -x*(2*x^3+4*x^2+5*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Oct 22 2014
a(n) = 3/2 * n^2 + ((-1)^n-1) * n/4. E.g.f.: ((3/2)*x^2+(5/4)*x)*exp(x)-(x/4)*exp(-x). - Robert Israel, Oct 26 2014