A249141 Decimal expansion of 'sigma', a constant associated with the expected number of random elements to generate a finite abelian group.
2, 1, 1, 8, 4, 5, 6, 5, 6, 3, 4, 7, 0, 1, 6, 3, 5, 3, 2, 3, 8, 2, 5, 2, 7, 7, 6, 9, 1, 0, 2, 3, 6, 4, 7, 6, 4, 2, 8, 8, 5, 9, 0, 7, 8, 5, 6, 1, 8, 5, 1, 7, 9, 1, 5, 4, 1, 4, 2, 6, 3, 8, 5, 2, 9, 0, 9, 8, 3, 4, 1, 1, 2, 3, 6, 5, 3, 4, 6, 3, 4, 5, 7, 7, 5, 5, 7, 0, 8, 2, 5, 9, 7, 8, 1, 8, 7, 6, 7, 9, 3, 9
Offset: 1
Examples
2.11845656347016353238252776910236476428859...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 273.
Links
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 33.
- Carl Pomerance, The expected number of random elements to generate a finite abelian group, Periodica Mathematica Hungarica 43 (2001), 191-198.
Programs
-
Mathematica
digits = 102; jmax = 400; P[j_] := 1/Product[N[Zeta[k], digits+100], {k, j, jmax}]; sigma = 1+Sum[1 - P[j], {j, 2, jmax}]; RealDigits[sigma, 10, digits] // First
-
PARI
default(realprecision,120); 1 + suminf(j=2, 1 - prodinf(k=j, 1/zeta(k))) \\ Michel Marcus, Oct 22 2014
Formula
sigma = 1+sum_{j >= 2} (1-prod_{k >= j} zeta(k)^(-1)).