A249160 Smallest number of iterations k such that A068527^(k)(n)=A068527^(k+1)(n).
1, 0, 2, 1, 2, 3, 1, 2, 1, 4, 3, 2, 3, 1, 2, 1, 3, 2, 4, 3, 2, 3, 1, 2, 1, 5, 2, 3, 2, 4, 3, 2, 3, 1, 2, 1, 3, 4, 5, 2, 3, 2, 4, 3, 2, 3, 1, 2, 1, 2, 4, 3, 4, 5, 2, 3, 2, 4, 3, 2, 3, 1, 2, 1, 2, 3, 2, 4, 3, 4, 5, 2, 3, 2, 4, 3, 2, 3, 1, 2, 1, 3, 4, 2, 3, 2, 4, 3, 4, 5, 2, 3, 2, 4, 3, 2, 3, 1, 2, 1
Offset: 1
Examples
R(10) = 6, R(6) = 3, R(3) = 1, R(1) = 0, R(0) = 0. Thus a(10) = 4.
Crossrefs
Cf. A068527.
Programs
-
Maple
A249160 := proc(n) local k,prev,this; prev := n ; for k from 1 do this := A068527(prev) ; if this = prev then return k-1; end if; prev := this ; end do: end proc: seq(A249160(n),n=1..80) ; # R. J. Mathar, Nov 17 2014
-
Mathematica
r[n_]:=Ceiling[Sqrt[n]]^2-n;Table[Length[FixedPointList[r,n]]-2,{n,1,100}]
-
PARI
r(n)=if(issquare(n),0,(sqrtint(n)+1)^2-n); le(n)=b=0;while(n!=0&&n!=2,b=b+1;n=r(n));return(b); range(n) = c=List(); for(a = 1, n, listput(c,a)); return(c); apply(le, range(100))
Comments