A256173 Numbers k such that ceiling(sqrt(k))^2 - k is a square.
0, 1, 3, 4, 5, 8, 9, 12, 15, 16, 21, 24, 25, 27, 32, 35, 36, 40, 45, 48, 49, 55, 60, 63, 64, 65, 72, 77, 80, 81, 84, 91, 96, 99, 100, 105, 112, 117, 120, 121, 128, 135, 140, 143, 144, 153, 160, 165, 168, 169, 171, 180, 187, 192, 195, 196, 200, 209, 216, 221, 224, 225, 231, 240, 247, 252, 255, 256, 264, 273, 280, 285, 288, 289, 299
Offset: 1
Keywords
Examples
Ceiling(sqrt(27))^2 - 27 = 9 = 3^2, so 27 is in the sequence.
Programs
-
Magma
[n: n in [0..200] | IsSquare(Ceiling(Sqrt(n))^2-n)]; // Vincenzo Librandi, Mar 18 2015
-
Mathematica
Flatten[Position[Table[n - Ceiling[Sqrt[n]]^2 + Ceiling[Sqrt[-n + Ceiling[Sqrt[n]]^2]]^2, {n, 0, 300}], 0]] - 1 Select[Range[0,300],IntegerQ[Sqrt[Ceiling[Sqrt[#]]^2-#]]&] (* Harvey P. Dale, Sep 06 2023 *)
-
PARI
isok(n) = issquare(ceil(sqrt(n))^2-n); \\ Michel Marcus, Mar 18 2015
Comments