cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A245602 Triangle read by rows: the negative terms of A163626.

Original entry on oeis.org

-1, -3, -7, -6, -15, -60, -31, -390, -120, -63, -2100, -2520, -127, -10206, -31920, -5040, -255, -46620, -317520, -181440, -511, -204630, -2739240, -3780000, -362880, -1023, -874500, -21538440, -59875200, -19958400, -2047
Offset: 0

Views

Author

Paul Curtz, Dec 17 2014

Keywords

Comments

These numbers a(n) are the companion of A249163(n).
Consider the Worpitzky fractions A163626(n)/A002260(n) yielding the second Bernoulli numbers A164555(n)/A027642(n):
1,
1, -1/2,
1, -3/2, +2/3,
1, -7/2, +12/3, -6/4,
etc.
From the second row on, the sum of the numerators is 0.
The absolute values of every row of the numerators triangle A163626 are 1, 2, 6, 26, ... = A000629(n).
a(n) triangle is shifted. It starts from second row and second column of triangle above.
-1,
-3,
-7, -6,
-15, -60,
-31, -390, -120,
-63, -2100, -2520,
-127, -10206, -31920, -5040,
-255, -46620, -317520, -181440,
etc.
Sum of successive rows: -1, -3, -13, -75, ... = -A000670(n+1).
Successive columns: A000225, A028244, from the Stirling numbers of second kind S(n,2), S(n,4), S(n,6), S(n,8), S(n,10), ... . See A000770, A032180, A049434, A228910, A049435, A228912, A008277.

Crossrefs

Programs

  • Mathematica
    Select[ Table[ (-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten, Negative] (* Jean-François Alcover, Dec 26 2014 *)

A258369 Stirling-Bernoulli transform of A027656.

Original entry on oeis.org

1, 1, 5, 25, 173, 1441, 14165, 160105, 2044733, 29105521, 456781925, 7834208185, 145760370893, 2923764916801, 62891469229685, 1444055265984265, 35250519098274653, 911569049328779281, 24893164161460525445, 715822742720760256345, 21620050147748210572013
Offset: 0

Views

Author

Philippe Deléham, May 28 2015

Keywords

Comments

Also called Akiyama-Tanigawa transform of A027656.

Examples

			a(0) = 1*1 = 1.
a(1) = 1*1 = 1.
a(2) = 1*1 + 2*2 = 5.
a(3) = 1*1 + 12*2 = 25.
a(4) = 1*1 + 50*2 + 24*3 = 173.
		

Crossrefs

Formula

a(n) = Sum_{k = 0..n} A163626(n,k)*A027656(k).
a(n) = Sum_{k>=0} A249163(n,k) * (k+1).
E.g.f.: 1/(exp(x)*(2 - exp(x))^2).
a(n) ~ n! * n / (8 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018

A249182 Proceed counterclockwise on the outer keys of a numeric keypad (i.e., 1,2,3,6,9,8,7,4): first single digits, then concatenate two digits, then three, etc.

Original entry on oeis.org

1, 2, 3, 6, 9, 8, 7, 4, 12, 23, 36, 69, 98, 87, 74, 41, 123, 236, 369, 698, 987, 874, 741, 412, 1236, 2369, 3698, 6987, 9874, 8741, 7412, 4123, 12369, 23698, 36987, 69874, 98741, 87412, 74123, 41236, 123698, 236987, 369874, 698741, 987412, 874123, 741236, 412369
Offset: 1

Views

Author

M. F. Hasler, Oct 23 2014

Keywords

Comments

k-digit terms start at index 8k-7; for example, at index 57, start the 8-digit terms 12369874, 23698741, 36987412, 69874123, 98741236, 87412369, 74123698, 41236987.

Crossrefs

Programs

  • PARI
    d=Vec("12369874");for(L=1,6,for(i=1,#d,print1(concat(vector(L,j,d[(i+j-2)%#d+1]))",")))
Showing 1-3 of 3 results.