cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A249212 T(n,k)=Number of length n+6 0..k arrays with no seven consecutive terms having five times the sum of any two elements equal to two times the sum of the remaining five.

Original entry on oeis.org

126, 1792, 250, 14336, 4586, 496, 67452, 51200, 11874, 984, 242494, 294568, 183516, 30876, 1952, 714980, 1267754, 1287632, 658448, 80354, 3872, 1826748, 4353482, 6631348, 5630090, 2363528, 208876, 7680, 4173442, 12777540, 26526142, 34695508
Offset: 1

Views

Author

R. H. Hardin, Oct 23 2014

Keywords

Comments

Table starts
...126....1792......14336.......67452.......242494........714980........1826748
...250....4586......51200......294568......1267754.......4353482.......12777540
...496...11874.....183516.....1287632......6631348......26526142.......89437990
...984...30876.....658448.....5630090.....34695508.....161678612......626273302
..1952...80354....2363528....24619804....181549572.....985612414.....4386401650
..3872..208876....8486156...107662502....950035900....6008974124....30726981418
..7680..541624...30475714...470797744...4971575032...36636435714...215266489016
.15234.1400008..109474166..2058664560..26016562386..223372525098..1508222615012
.30218.3618986..393232196..9001977388.136146815610.1361915986824.10567758194606
.59940.9363890.1412652056.39365277268.712472439202.8303744023910.74046470379458

Examples

			Some solutions for n=3 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....1....1....1....0....0....1....0....0....0....0....0....0....0....0
..1....0....3....3....0....3....2....2....4....1....1....4....0....4....0....3
..2....0....0....4....3....3....2....2....1....2....4....1....2....3....1....4
..1....0....1....1....1....1....0....2....3....1....2....1....2....0....0....4
..1....4....3....3....3....2....4....1....2....3....2....1....3....2....3....0
..3....0....3....3....1....4....0....4....2....2....4....1....3....4....1....4
..3....2....4....4....4....0....0....1....0....4....2....2....0....0....3....0
..1....3....1....4....3....4....2....1....3....3....0....0....1....3....2....0
		

Crossrefs

Column 1 is A249190
Column 2 is A249191

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6)

A249319 T(n,k)=Number of length n+6 0..k arrays with no seven consecutive terms having six times any element equal to the sum of the remaining six.

Original entry on oeis.org

126, 1792, 250, 14336, 4586, 496, 68712, 51200, 11874, 984, 249088, 305908, 183516, 30876, 1952, 739284, 1340288, 1364252, 658388, 80354, 3872, 1898582, 4669434, 7224220, 6089486, 2362656, 208876, 7680, 4361056, 13824950, 29549686, 38980312
Offset: 1

Views

Author

R. H. Hardin, Oct 25 2014

Keywords

Comments

Table starts
...126....1792......14336.......68712.......249088.........739284
...250....4586......51200......305908......1340288........4669434
...496...11874.....183516.....1364252......7224220.......29549686
...984...30876.....658388.....6089486.....38980312......187202568
..1952...80354....2362656....27195324....210466508.....1186724138
..3872..208876....8479940...121490228...1136802444.....7525617064
..7680..541624...30441964...542821804...6141387290....47731565832
.15234.1400008..109315912..2425448642..33179587514...302750656716
.30218.3618986..392540302.10837998920.179264996934..1920348850344
.59940.9363890.1409749660.48432447004.968578232316.12181094726996

Examples

			Some solutions for n=3 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..0....0....1....1....1....0....0....1....1....0....1....1....1....1....0....0
..3....2....3....2....1....3....2....0....0....1....2....2....3....0....3....0
..2....3....0....0....2....2....3....3....3....0....4....2....3....2....3....0
..1....2....2....2....1....2....2....4....1....3....3....3....2....4....4....2
..3....1....0....3....1....3....3....2....3....4....2....1....1....2....4....4
..2....4....2....4....4....1....0....3....4....2....0....0....0....4....4....2
..0....0....3....4....0....1....3....4....4....1....4....0....1....2....2....4
..0....0....3....0....1....1....2....2....0....1....2....0....3....3....2....0
		

Crossrefs

Column 1 is A249190
Column 2 is A249191

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5) +a(n-6)
Empirical for row n:
n=1: [linear recurrence of order 19; also a polynomial of degree 7 plus a quasipolynomial of degree 0 with period 60]
Showing 1-2 of 2 results.