cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335415 Decimal expansion of Sum_{k>=0} 1/cosh(Pi*k).

Original entry on oeis.org

1, 0, 9, 0, 1, 7, 0, 2, 9, 9, 5, 0, 8, 0, 4, 8, 1, 1, 3, 0, 2, 2, 6, 6, 8, 9, 7, 0, 2, 7, 9, 2, 4, 4, 2, 9, 3, 6, 1, 6, 8, 5, 8, 3, 1, 7, 4, 4, 0, 7, 2, 3, 6, 4, 9, 7, 5, 7, 9, 3, 2, 1, 9, 9, 7, 0, 2, 1, 5, 2, 0, 9, 0, 3, 6, 0, 3, 5, 7, 8, 9, 7, 4, 8, 9, 2, 2, 9, 3, 0, 8, 0, 9, 7, 9, 0, 3, 9, 7, 7, 1, 0, 4, 7, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 08 2020

Keywords

Examples

			1.090170299508048113022668970279244293616858317440723649757932199702152...
		

Crossrefs

Cf. A240964, A254445, A335414. Essentially the same as A249205.

Programs

  • Maple
    evalf(Sum(1/cosh(Pi*k), k=0..infinity), 120);
    evalf(1/2 + sqrt(Pi) / (2*GAMMA(3/4)^2), 120);
  • Mathematica
    RealDigits[1/2 + Gamma[1/4]^2/(4*Pi^(3/2)), 10, 120][[1]]
  • PARI
    suminf(k=0, 1/cosh(Pi*k))

Formula

Equals 1/2 + Gamma(1/4)^2 / (4*Pi^(3/2)).
Equals 1/2 + sqrt(Pi) / (2*Gamma(3/4)^2).

A249206 Decimal expansion of the logarithmic capacity of the unit equilateral triangle.

Original entry on oeis.org

4, 2, 1, 7, 5, 3, 9, 3, 4, 6, 4, 8, 4, 2, 6, 8, 2, 4, 2, 3, 8, 1, 2, 2, 9, 5, 8, 5, 9, 2, 7, 7, 3, 0, 5, 9, 1, 0, 7, 7, 1, 0, 6, 3, 3, 2, 8, 3, 0, 6, 4, 3, 5, 1, 5, 6, 3, 3, 9, 3, 5, 9, 0, 1, 1, 1, 2, 1, 4, 4, 3, 9, 2, 0, 4, 1, 2, 7, 9, 4, 2, 6, 9, 3, 6, 5, 7, 1, 7, 3, 7, 2, 4, 8, 4, 4, 9, 0, 2, 1, 2, 3
Offset: 0

Views

Author

Jean-François Alcover, Oct 23 2014

Keywords

Examples

			0.421753934648426824238122958592773059107710633283...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.9 Integer Chebyshev constants, p. 268.

Crossrefs

Programs

  • Mathematica
    k = (Sqrt[3]/(8*Pi^2))*Gamma[1/3]^3; RealDigits[k, 10, 102] // First

Formula

k = (sqrt(3)/(8*Pi^2))*Gamma(1/3)^3.

A249220 Decimal expansion of a constant related to the [dimensionless] electrical capacitance of the ring torus without hole (with unit circle radius).

Original entry on oeis.org

4, 3, 5, 3, 4, 5, 0, 6, 6, 2, 6, 8, 9, 7, 1, 9, 2, 7, 5, 3, 2, 1, 4, 8, 1, 2, 5, 5, 9, 6, 3, 2, 0, 8, 2, 4, 3, 4, 8, 0, 9, 1, 5, 5, 6, 2, 7, 6, 7, 4, 5, 4, 3, 3, 6, 4, 4, 4, 6, 7, 7, 1, 6, 3, 4, 0, 9, 9, 2, 9, 3, 7, 7, 2, 4, 2, 7, 7, 7, 6, 8, 4, 2, 1, 5, 8, 1, 7, 1, 1, 3, 4, 5, 7, 9, 1, 5, 9, 5, 3
Offset: 0

Views

Author

Jean-François Alcover, Oct 23 2014

Keywords

Examples

			0.435345066268971927532148125596320824348...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.9 Integer Chebyshev constants, p. 268.

Crossrefs

Programs

  • Maple
    evalf(int(1/BesselI(0,x)^2, x=0..infinity)/Pi, 50); # Vaclav Kotesovec, Oct 23 2014
  • Mathematica
    k = (1/Pi)*NIntegrate[1/BesselI[0, t]^2, {t, 0, Infinity}, WorkingPrecision -> 100]; RealDigits[k] // First

Formula

k = (1/Pi)*integral_{0..infinity} 1/I_0(t)^2 dt, where I_0 is the zeroth modified Bessel function of the first kind.
The electrical capacitance is 4*k = 1.74138...
Showing 1-3 of 3 results.