A249205 Decimal expansion of the logarithmic capacity of the unit disk.
5, 9, 0, 1, 7, 0, 2, 9, 9, 5, 0, 8, 0, 4, 8, 1, 1, 3, 0, 2, 2, 6, 6, 8, 9, 7, 0, 2, 7, 9, 2, 4, 4, 2, 9, 3, 6, 1, 6, 8, 5, 8, 3, 1, 7, 4, 4, 0, 7, 2, 3, 6, 4, 9, 7, 5, 7, 9, 3, 2, 1, 9, 9, 7, 0, 2, 1, 5, 2, 0, 9, 0, 3, 6, 0, 3, 5, 7, 8, 9, 7, 4, 8, 9, 2, 2, 9, 3, 0, 8, 0, 9, 7, 9, 0, 3, 9, 7, 7, 1
Offset: 0
Examples
0.59017029950804811302266897027924429361685831744...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.9 Integer Chebyshev constants, p. 268.
Links
- Steven Finch, Electrical capacitance [Cached copy, with permission of the author]
Programs
-
Mathematica
k = (1/(4*Pi^(3/2)))*Gamma[1/4]^2; RealDigits[k, 10, 100] // First
-
PARI
(1/(4*Pi^(3/2)))*gamma(1/4)^2 \\ Michel Marcus, Sep 03 2023
Formula
Equals (1/(4*Pi^(3/2)))*Gamma(1/4)^2.
Equals hypergeom([1/2, 1/2], [1], 1/2)/2. - Gerry Martens, Jul 31 2023