A249246 Start with a single equilateral triangle for n=0; for the odd n-th generation add a triangle at each expandable side of the triangles of the (n-1)-th generation (this is the "vertex to side" version); for the even n-th generation use the "vertex to vertex" version; a(n) is the number of triangles in the n-th generation.
1, 3, 6, 15, 18, 30, 24, 45, 30, 60, 36, 75, 48, 90, 54, 105, 60, 120, 66, 135, 78, 150, 84, 165, 90, 180, 96, 195, 108, 210, 114, 225, 120, 240, 126, 255, 138, 270, 144, 285, 150, 300, 156, 315, 168, 330, 174, 345, 180, 360, 186, 375, 198, 390, 204, 405, 210, 420, 216, 435
Offset: 0
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms
Crossrefs
Programs
-
PARI
{ c2=0;c3=0;c5=3; for(n=0,100, if (Mod(n,2)==0, \\even if (n<1,a(n)=1,c3=c3+c2;a=6*c3); c1=n/8+3/4; if (c1==floor(c1),c2=2,c2=1) , \\odd a=c5; if (n<=1,c4=12,c4=15); c5=c5+c4 ); print1(a", ") ) }
Formula
Empirical g.f.: (3*x^11 + x^10 + 12*x^9 + 5*x^8 + 15*x^7 + 6*x^6 + 15*x^5 + 12*x^4 + 12*x^3 + 5*x^2 + 3*x + 1) / ((x-1)^2*(x+1)^2*(x^2+1)*(x^4+1)). - Colin Barker, Oct 24 2014
Extensions
Edited. Name and comment reformulated. - Wolfdieter Lang, Nov 04 2014
Comments