cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249263 Primitive, odd, squarefree abundant numbers.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655, 118965
Offset: 1

Views

Author

Derek Orr, Oct 23 2014

Keywords

Comments

The subsequence of primitive terms (not multiples of smaller terms) of A112643.
The subsequence of squarefree terms of A006038.
The subsequence of odd terms of A249242.
Not the same as A129485. Does not contain, for example, 195195, 255255, 285285, 333795, 345345, 373065, which are in A129485. - R. J. Mathar, Nov 09 2014
Sequences A287590, A188342 and A287581 list the number, smallest* and largest of all squarefree odd primitive abundant numbers with n prime factors. (*At least whenever A188342(n) is squarefree, which appears to be the case for all n >= 5.) - M. F. Hasler, May 29 2017

Crossrefs

Intersection of A112643 and A006038.
Cf. A188342 (least with n factors), A287581 (largest with n factors), A287590 (number of terms with n factors).

Programs

  • Maple
    # see A112643 and A006038 for the coding of isA112643 and isA006038
    isA249263 := proc(n)
        isA112643(n) and isA006038(n) ;
    end proc:
    for n from 1 do
        if isA249263(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    PrimAbunQ[n_] := Module[{x, y},
       y = Most[Divisors[n]]; x = DivisorSigma[1, y];
       DivisorSigma[1, n] > 2 n  &&  AllTrue[x/y, # <= 2  &]];
    Select[Range[1, 120000, 2], PrimAbunQ[#] &&
    AllTrue[FactorInteger[#][[All, 2]], # == 1 &]  &] (* Robert Price, Sep 26 2019 *)
  • PARI
    v=[]; for(k=1, 10^5, n=2*k+1; if(issquarefree(n) && sigma(n)>2*n, for(i=1, #v, n%v[i] || next(2)); print1(n, ", "); v=concat(v, n))) \\ Improved (from 20 sec to 0.2 sec) by M. F. Hasler, May 27 2017