cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A188342 Smallest odd primitive abundant number (A006038) having n distinct prime factors.

Original entry on oeis.org

945, 3465, 15015, 692835, 22309287, 1542773001, 33426748355, 1635754104985, 114761064312895, 9316511857401385, 879315530560980695, 88452776289145528645, 2792580508557308832935, 428525983200229616718445, 42163230434005200984080045, 1357656019974967471687377449
Offset: 3

Views

Author

T. D. Noe, Mar 28 2011

Keywords

Comments

Dickson proves that there are only a finite number of odd primitive abundant numbers having n distinct prime factors. For n=3, there are 8 such numbers: 945, 1575, 2205, 7425, 78975, 131625, 342225, 570375. See A188439.
a(14) <= 88452776289145528645. - Donovan Johnson, Mar 31 2011
a(15) <= 2792580508557308832935, a(16) <= 428525983200229616718445, a(17) <= 42163230434005200984080045. If these a(n) are squarefree and don't have a greatest prime factor more than 3 primes away from that of the preceding term, then these bounds are the actual values of a(n). The PARI code needs only fractions of a second to compute further bounds, which under the given hypotheses are the actual values of a(n). - M. F. Hasler, Jul 17 2016
It appears that the terms are squarefree for n >= 5, so they yield also the smallest term of A249263 with n factors; see A287581 for the largest such, and A287590 for the number of such terms with n factors. (For nonsquarefree odd abundant numbers, this seems to be known only for n = 3 and n = 4 prime factors (8 respectively 576 terms), cf. A188439.) - M. F. Hasler, May 29 2017
Comment from Don Reble, Jan 17 2023: (Start)
"If these a(n) are squarefree and don't have a greatest prime factor more than 3 primes away from that of the preceding term, then these bounds are the actual values of a(n)."
This conjecture is correct up to a(50). (End)

Examples

			From _M. F. Hasler_, Jul 17 2016: (Start)
               945 = 3^3 * 5 * 7
              3465 = 3^2 * 5 * 7 * 11
             15015 = 3 * 5 * 7 * 11 * 13
            692835 = 3 * 5 * 11 * 13 * 17 * 19     (n=6: gpf increases by 2 primes)
          22309287 = 3 * 7 * 11 * 13 * 17 * 19 * 23
        1542773001 = 3 * 7 * 11 * 17 * 19 * 23 * 29 * 31
       33426748355 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31
     1635754104985 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 37 * 41     (here too)
   114761064312895 = 5 * 7 * 11 * 13 * 17 * 23 * 29 * 31 * 37 * 41 * 43
  9316511857401385 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47
879315530560980695 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 53 * 59 * 61 (n=13: gpf increases for the first time by 3 primes) (End)
		

Crossrefs

Programs

  • Mathematica
    PrimAbunQ[n_] := Module[{x, y},
       y = Most[Divisors[n]]; x = DivisorSigma[1, y];
       DivisorSigma[1, n] > 2 n  &&  AllTrue[x/y, # <= 2  &]];
    Table[k = 1;
     While[! PrimAbunQ[k] || Length[FactorInteger[k][[All, 1]]] != n,
    k += 2]; k, {n, 3, 6}] (* Robert Price, Sep 26 2019 *)
  • PARI
    A188342=[0,0,945,3465]; a(n,D(n)=n\6+1)={while(n>#A188342, my(S=#A188342, T=factor(A188342[S])[,1], M=[primepi(T[1]),primepi(T[#T])+D(S++)], best=prime(M[2])^S); forvec(v=vector(S,i,M), best>(T=prod(i=1,#v,prime(v[i]))) && (S=prod(i=1,#v,prime(v[i])+1)-T*2)>0 && S*prime(v[#v])A188342=concat(A188342,best));A188342[n]} \\ Assuming a(n) squarefree for n>4, search is exhaustive within the limit primepi(gpf(a(n))) <= primepi(gpf(a(n-1)))+D(n), with D(n) given as optional 2nd arg. - M. F. Hasler, Jul 17 2016
    
  • PARI
    generate(A, B, n) = A=max(A, vecprod(primes(n+1))\2); (f(m, p, j) = my(list=List()); if(sigma(m) > 2*m, return(list)); forprime(q=p, sqrtnint(B\m, j), my(v=m*q); while(v <= B, if(j==1, if(v>=A && sigma(v) > 2*v, my(F=factor(v)[,1], ok=1); for(i=1, #F, if(sigma(v\F[i], -1) > 2, ok=0; break)); if(ok, listput(list, v))), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, 3, n)));
    a(n) = my(x=vecprod(primes(n+1))\2, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 10 2024

Extensions

a(8)-a(12) from Donovan Johnson, Mar 29 2011
a(13) from Donovan Johnson, Mar 31 2011
a(14)-a(17) confirmed and a(18) from Daniel Suteu, Feb 10 2024

A287581 Largest squarefree odd primitive abundant number with n prime factors.

Original entry on oeis.org

442365, 13455037365, 1725553747427327895, 977844705701880720314685634538055, 29094181301361888360228876470808927597684302024968488289496445
Offset: 5

Views

Author

M. F. Hasler, May 26 2017

Keywords

Comments

There is no squarefree odd abundant number with fewer than 5 prime factors: the largest abundancy an odd squarefree number with 4 prime factors can have is that of N = 3*5*7*11 with sigma_{-1}(N) = sigma(N)/N = 2 - 2/385.
See A287590 for the number of squarefree odd primitive abundant numbers (A249263) with n prime factors.
The next term, a(10), is too large to display.
It appears that the largest odd primitive abundant number with a given number of prime factors counted with multiplicity (bigomega = A001222), is always squarefree. Whenever this holds for a given n, then a(n) is also equal to the last term in row n of A287646 which lists odd primitive abundant numbers with n prime factors.

Examples

			a(5) = 442365 = 3 * 5 * 7 * 11 * 383 is the largest squarefree odd primitive abundant number (SOPAN). Here, 3*5*7*11 is the smallest possibility to produce a squarefree odd deficient number with 4 prime factors, and it is the one with the largest possible abundancy, and 383 is the largest prime by which this can be multiplied to yield an abundant number. One can increase 11 up to 19 to get more SOPAN (for a total of 71 + 12 + 3 + 1 = 87 = A287590(5) SOPAN with 5 factors), none of which is larger. One can see that increasing the 3rd prime factor 7 to 11 yields no further possibilities, and therefore also the second and third factor can't be increased.
a(6) = 13455037365 = 3 * 5 * 7 * 11 * 389 * 29947,
a(7) = 1725553747427327895 = 3 * 5 * 7 * 11 * 389 * 29959 * 128194559,
a(8) = 3 * 5 * 7 * 11 * 389 * 29959 * 128194589 * 566684450325179,
a(9) = a(8)/gpf(a(8)) * 566684450325197 * 29753376105337343078941364893,
a(10) = a(9)/gpf(a(9)) * 29753376105337343078941364947 * 30082232218581187462432471034748868284388270918928732059.
		

Crossrefs

Programs

  • PARI
    A287581(n,p=3,P=p,s=2)={forstep(i=n,2,-1,n=max(1\(-1+s/=1+1/p),p+1); P*=p=if(i>2,nextprime(n),precprime(n)));P}

Formula

a(n+1) = (a(n)/p(n))*p'(n)*q(n), where p(n) = gpf(a(n)), p'(n) = nextprime(p(n)+1), q(n) = precprime(1/(2/sigma[-1](a(n)/p(n)*p'(n))-1)), sigma[-1](x) = sigma(x)/x; conjectured to hold for all n >= 5.

A287590 Number of squarefree odd primitive abundant numbers with n prime factors.

Original entry on oeis.org

0, 0, 0, 0, 87, 14172, 101053625, 3475496953795289
Offset: 1

Views

Author

M. F. Hasler, May 26 2017

Keywords

Comments

See A287581 for the largest squarefree odd primitive abundant number (A249263) with n prime factors.
Squarefree odd primitive abundant numbers (SOPAN) with r prime factors are of the form N = p_1 * ... * p_r with 3 <= p_1 < ... < p_r and such that the abundancy A(p_1 * ... * p_k) < 2 for k < r and > 2 for k = r, where A(N) = sigma(N)/N. For r < 5 this can never be satisfied, the largest possible value is A(3*5*7*11) = 2 - 2/385.

Examples

			From _M. F. Hasler_, Jun 26 2017: (Start)
All squarefree odd primitive abundant numbers (SOPAN) have at least 5 prime factors, since the abundancy of a product of 4 distinct odd primes cannot be larger than that of N = 3*5*7*11, with A000203(N)/N = 4/3 * 6/5 * 8/7 * 12/11 = 768/385 = 2 - 2/385 < 2.
The 87 SOPAN with 5 prime factors range from A249263(1) = 15015 = 3*5*7*11*13 to  A287581(5) = A249263(87) = 442365 = 3*5*7*11*383.
The 14172 SOPAN with 6 prime factors range from A188342(6) = A249263(88) = 692835 = 3*5*11*13*17*19 to A287581(6) = 13455037365  = 3*5*7*11*389*29947.
The 101053625 SOPAN with 7 prime factors range from A188342(7) = A249263(608) = 22309287 = 3*7*11*13*17*19*23 to A287581(7) = 1725553747427327895 = 3*5*7*11*389*29959*128194559. (End)
		

Crossrefs

Programs

  • PARI
    A287590(r,p=2,a=2,s=0,n=precprime(1\(a-1)))={ r>1 || return(primepi(n)-primepi(p)); (pa && while( 0A287590(r-1,p=nextprime(p+1),a/(1+1/p)),s+=n); s}

Extensions

Added a(8) calculated by Gianluca Amato. - M. F. Hasler, Jun 26 2017
Example for 101053625 corrected by Peter Munn, Jul 23 2017

A298973 Squarefree primitive abundant numbers (first definition: having only deficient proper divisors).

Original entry on oeis.org

70, 1430, 1870, 2002, 2090, 2210, 2470, 2530, 2990, 3190, 3230, 3410, 3770, 4030, 4070, 4510, 4730, 5170, 5830, 15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 49742, 50505, 51765, 54285, 55965, 58695, 58786, 60214, 61215, 64155, 67298
Offset: 1

Views

Author

M. F. Hasler, Feb 16 2018

Keywords

Comments

Squarefree numbers (A005117) in A071395. The number of terms with n prime factors are counted in A295369. The subsequence of odd terms is A249263.
Two variants of the present sequence are possible: the terms listed by size, or as a table whose n-th row gives all those with n prime factors (so that A295369 would be the row lengths). They would differ only from a(322) = 692835 on, which is the first term with 6 prime factors, while a(755) = 4199030 is the last term with 5 prime factors.
A subsequence of the variant A249242, squarefree primitive abundant numbers using the 2nd definition, A091191, i.e., having no abundant proper divisors.
These numbers are also primitive unitary abundant numbers: unitary abundant numbers (A034683) that are also primitive abundant numbers (A071395). A unitary abundant number k is primitive if and only if usigma(k) - 2*k < 2*k/p^e, where p^e is the largest prime power dividing k and usigma is the sum of unitary divisors function (A034448). For numbers k in this sequence limsup_{k->oo} usigma(k)/k = 2. (Prasad and Reddy, 1990). - Amiram Eldar, Jul 18 2020

Examples

			The only squarefree primitive abundant number (SFPAN) with only 3 prime factors is a(1) = 2*5*7 = 70. Indeed, this number is abundant (sigma(70) - 70 = 1 + 2 + 5 + 7 + 10 + 14 + 35 = 74) but all of 2*5, 2*7 and 5*7 are deficient. This is also the smallest (thus primitive) weird number, see A002975.
The A295369(4) = 18 SFPAN with 4 prime factors range from a(2) = 2*5*11*13 = 1430 to a(19) = 2*5*11*53 = 5830.
The A295369(5) = 610 SFPAN with 5 prime factors range from a(20) = 3*5*7*11*13 = 15015 to a(755) = 2*5*11*59*647 = 4199030, but the first term with 6 prime factors occurs already at a(322) =  3*5*11*13*17*19 = 692835.
		

References

  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, p. 115.

Crossrefs

Cf. A005117 (squarefree numbers), A071395 (primitive abundant numbers, first definition), A091191 (idem, second definition), A249242 (squarefree numbers in A091191).

Programs

  • Mathematica
    spaQ[n_] := SquareFreeQ[n] && DivisorSigma[1, n] > 2*n && AllTrue[Most @ Divisors[n], DivisorSigma[1, #] < 2*# &]; Select[Range[70000], spaQ] (* Amiram Eldar, Jul 18 2020 *)
  • PARI
    is_A298973(n)=issquarefree(n)&&is_A071395(n)

A360526 Odd numbers k such that A360522(k) > 2*k.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2023

Keywords

Comments

First differs from A112643, A129485, A249263 at n = 46: a(46) = 165165 is not a term of these sequences.

Examples

			15015 is a term since A360522(15015) = 32256 > 2*15015.
		

Crossrefs

Cf. A360522.
Subsequence of A005101, A005231 and A360525.

Programs

  • Mathematica
    f[p_, e_] := p^e + e; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; q[n_] := s[n] > 2*n; Select[Range[1, 10^5, 2], q]
  • PARI
    isab(n) = { my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,2]) > 2*n;}
    is(n) = n%2 && isab(n);

A287728 Number of odd primitive abundant numbers with n prime factors, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 121, 15772, 102896101, 3475842606319962
Offset: 1

Views

Author

M. F. Hasler, May 30 2017

Keywords

Comments

There is no odd abundant number (A005231) with less than 5 prime factors counted with multiplicity (cf. A001222).
Sequence A188439 lists the odd primitive abundant numbers (A006038) sorted by increasing number of distinct prime factors. It is known that there are 576 such terms with r = 3 distinct prime factors, but their number for any larger r = omega(x) appears to be unknown as of today.
It appears that a(n) is just slightly larger than A287590(n), the number of squarefree odd primitive abundant numbers (A249263) with n prime factors. Those with a prime factor to a higher power become less frequent because there are increasingly many terms of the form m*p_r where m has abundancy slightly less than 2, and p_r can be any prime between gpf(m) and 1/(2/A(m)-1) which becomes very large as A(m) -> 2. This also makes difficult the computation of a(n) for n >= 8: The lexicographic smallest choice of (p_1,...,p_8) has p_7 = 128194589 and then 128194601 <= p_8 <= 566684450325179, and calculation of primepi(566'684'450'325'179) takes very long.

Crossrefs

Programs

  • SageMath
    # See GitHub link.

Extensions

a(7) from Gianluca Amato, Jun 26 2017
a(8) from Gianluca Amato, Feb 26 2018

A339938 Odd non-coreful abundant numbers: the odd terms of A308127.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 75075, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 105105
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Comments

First differs from A112643, A129485 and A249263 at n = 28.

Examples

			15015 is a term since it is odd and the sum of its non-coreful divisors is A308135(15015) = 17241 > 15015.
		

Crossrefs

Intersection of A005408 and A308127.
Cf. A308135.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; s[1] = 0; s[n_] := Times @@ (f @@@ FactorInteger[n]) - Times @@ (fc @@@ FactorInteger[n]); Select[Range[1, 10^5, 2], s[#] > # &]

A379031 Odd modified exponential abundant numbers: odd numbers k such that A241405(k) > 2*k.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2024

Keywords

Comments

First differs from its subsequences A112643 and A249263 at n = 51: a(51) = 195195 is not a term of these two sequences.
First differs from its subsequence A129485 at n = 363: a(363) = 2537535 is not a term of A129485.
First differs from A339938 at n = 28: A339938(28) = 75075 is not a term of this sequence.
First differs from A360526 at n = 46: A360526(46) = 165165 is not a term of this sequence.

Crossrefs

Intersection of A005408 and A379029.
Subsequence of A005231.
Subsequences: A112643, A129485, A249263.
Cf. A241405.

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e + 1, p^(# - 1) &]; mesigma[1] = 1; mesigma[n_] := Times @@ f @@@ FactorInteger[n]; meAbQ[n_] := mesigma[n] > 2*n; Select[Range[1, 10^5, 2], meAbQ]
  • PARI
    is(k) = if(!(k%2), 0, my(f=factor(k)); prod(i=1, #f~, sumdiv(f[i, 2]+1, d, f[i, 1]^(d-1))) > 2*k);

A360356 Primitive terms of A360332: terms of A360332 with no proper divisor in A360332.

Original entry on oeis.org

56, 104, 196, 304, 364, 368, 464, 532, 644, 812, 1036, 1184, 1204, 1316, 1376, 1484, 1504, 1696, 1708, 1952, 1988, 2044, 2212, 2492, 2716, 2828, 2884, 2996, 3164, 3496, 3668, 3836, 3892, 4172, 4228, 4408, 4544, 4564, 4672, 4676, 4844, 5056, 5068, 5336, 5404, 5516
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2023

Keywords

Comments

If m is a term then k*m is a term of A360332 for all k in A320628.
Analogous to primitive abundant numbers (A091191) with divisors that are restricted to numbers that have only nonprime-indexed prime factors.

Crossrefs

Subsequence of A360332.
Cf. A320628.
Similar sequences: A006038, A091191, A249263, A302574, A360355.

Programs

  • Mathematica
    f[p_, e_] := If[PrimeQ[PrimePi[p]], 1, (p^(e + 1) - 1)/(p - 1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; primQ[n_] := s[n] > 2*n && AllTrue[Divisors[n], # == n || s[#] <= 2*# &]; Select[Range[6000], primQ]
  • PARI
    isab(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), 1, (p[i]^(e[i]+1)-1)/(p[i]-1))) > 2*n;}
    is(n) = {if(!isab(n), return(0)); fordiv(n, d, if(d < n && isab(d), return(0))); return(1)};

A360355 Primitive terms of A360328: terms of A360328 with no proper divisor in A360328.

Original entry on oeis.org

7425, 8415, 46035, 76725, 101475, 182655, 355725, 669735, 1411425, 1606275, 2352375, 2891295, 3592215, 3650625, 4079295, 4861575, 5053455, 5870205, 6093225, 6636465, 6920595, 7732395, 8750835, 9120375, 9783675, 9850005, 9958905, 10155375, 11298375, 11532375, 12120075
Offset: 1

Views

Author

Amiram Eldar, Feb 04 2023

Keywords

Comments

If m is a term then k*m is a term of A360328 for all k in A076610.
Analogous to primitive abundant numbers (A091191) with divisors that are restricted to numbers that have only prime-indexed prime factors.

Crossrefs

Subsequence of A360328.
Cf. A076610.
Similar sequences: A006038, A091191, A249263, A302574, A360356.

Programs

  • Mathematica
    f[p_, e_] := If[PrimeQ[PrimePi[p]], (p^(e + 1) - 1)/(p - 1), 1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; primQ[n_] := s[n] > 2*n && AllTrue[Divisors[n], # == n || s[#] <= 2*# &]; Select[Range[10^6], primQ]
  • PARI
    isab(n) = {my(f = factor(n), p = f[,1], e = f[,2]); prod(i = 1, #p, if(isprime(primepi(p[i])), (p[i]^(e[i]+1)-1)/(p[i]-1), 1)) > 2*n;}
    is(n) = {if(!isab(n), return(0)); fordiv(n, d, if(d < n && isab(d), return(0))); return(1)};
Showing 1-10 of 10 results.