cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A006038 Odd primitive abundant numbers.

Original entry on oeis.org

945, 1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 7425, 8085, 8415, 8925, 9135, 9555, 9765, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 18585, 19215, 19635, 21105, 21945, 22365, 22995, 23205, 24885, 25935, 26145, 26565, 28035, 28215
Offset: 1

Views

Author

Keywords

Comments

Dickson proves that there are only a finite number of odd primitive abundant numbers having n distinct prime factors. Sequence A188342 lists the smallest such numbers. - T. D. Noe, Mar 28 2011
Sequence A188439 sorts the numbers in this sequence by the number of distinct prime factors. Eight numbers have exactly three prime factors; 576 have exactly four prime factors. - T. D. Noe, Apr 04 2011
Any multiple of an abundant number (A005101) is again an abundant number. Primitive abundant numbers (A091191) are those not of this form, i.e., without an abundant proper divisor. We don't know any odd perfect number (A000396), so the (odd) terms here have only deficient proper divisors (A071395), and their prime factors p are less than sigma(n/p)/deficiency(n/p). See A005231 (odd abundant numbers) for an explanation why all terms have at least 3 distinct prime factors, and 5 prime factors when counted with multiplicity (A001222), whence a(1) = 3^3*5*7. All known terms are semiperfect (A005835, and thus in A006036): no odd weird number (A006037) is known, but if it exists, the smallest one is in this sequence. - M. F. Hasler, Jul 28 2016
So far, a(173) = 351351 is the only known term of A122036, i.e., which can't be written as sum of its proper divisors > 1. - M. F. Hasler, Jan 26 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005101, A005231. Subsequence of A091191.
Cf. A000203, A027751, A379949 (subsequence of square terms).

Programs

  • Haskell
    a006038 n = a006038_list !! (n-1)
    a006038_list = filter f [1, 3 ..] where
       f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)
             where pdivs = a027751_row x
    -- Reinhard Zumkeller, Jan 31 2014
  • Maple
    isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:
    isA005100 := proc(n) is(numtheory[sigma](n) < 2*n ); end proc:
    isA006038 := proc(n) local d; if type(n,'odd') and isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if not isA005100(d) then return false; end if; end do: return true;else false; end if; end proc:
    n := 1 ; for a from 1 by 2 do if isA006038(a) then printf("%d %d\n",n,a) ; n := n+1 ; end if; end do: # R. J. Mathar, Mar 28 2011
  • Mathematica
    t = {}; n = 1; While[Length[t] < 50, n = n + 2; If[DivisorSigma[1, n] > 2 n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
  • PARI
    is(n)=n%2 && sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Jun 10 2013
    
  • PARI
    is_A006038(n)=bittest(n,0) && sigma(n)>2*n && !for(i=1,#f=factor(n)[,1],sigma(n\f[i],-1)>2&&return) \\ More than 5 times faster. - M. F. Hasler, Jul 28 2016
    

A249263 Primitive, odd, squarefree abundant numbers.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655, 118965
Offset: 1

Views

Author

Derek Orr, Oct 23 2014

Keywords

Comments

The subsequence of primitive terms (not multiples of smaller terms) of A112643.
The subsequence of squarefree terms of A006038.
The subsequence of odd terms of A249242.
Not the same as A129485. Does not contain, for example, 195195, 255255, 285285, 333795, 345345, 373065, which are in A129485. - R. J. Mathar, Nov 09 2014
Sequences A287590, A188342 and A287581 list the number, smallest* and largest of all squarefree odd primitive abundant numbers with n prime factors. (*At least whenever A188342(n) is squarefree, which appears to be the case for all n >= 5.) - M. F. Hasler, May 29 2017

Crossrefs

Intersection of A112643 and A006038.
Cf. A188342 (least with n factors), A287581 (largest with n factors), A287590 (number of terms with n factors).

Programs

  • Maple
    # see A112643 and A006038 for the coding of isA112643 and isA006038
    isA249263 := proc(n)
        isA112643(n) and isA006038(n) ;
    end proc:
    for n from 1 do
        if isA249263(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    PrimAbunQ[n_] := Module[{x, y},
       y = Most[Divisors[n]]; x = DivisorSigma[1, y];
       DivisorSigma[1, n] > 2 n  &&  AllTrue[x/y, # <= 2  &]];
    Select[Range[1, 120000, 2], PrimAbunQ[#] &&
    AllTrue[FactorInteger[#][[All, 2]], # == 1 &]  &] (* Robert Price, Sep 26 2019 *)
  • PARI
    v=[]; for(k=1, 10^5, n=2*k+1; if(issquarefree(n) && sigma(n)>2*n, for(i=1, #v, n%v[i] || next(2)); print1(n, ", "); v=concat(v, n))) \\ Improved (from 20 sec to 0.2 sec) by M. F. Hasler, May 27 2017

A188439 Irregular triangle of odd primitive abundant numbers (A006038) in which row n has numbers with n distinct prime factors.

Original entry on oeis.org

945, 1575, 2205, 7425, 78975, 131625, 342225, 570375, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 8085, 8415, 8925, 9135, 9555, 9765, 11655, 12705, 12915, 13545, 14805, 16695, 18585, 19215, 21105, 22365, 22995, 24885, 26145, 28035, 28215, 29835
Offset: 3

Views

Author

T. D. Noe, Mar 31 2011

Keywords

Comments

The initial row has 8 terms. Row n begins with A188342(n). Dickson proves that each row has a finite number of terms. He lists the first two rows in factored form in his paper. However, as Ferrier and Herzog report, Dickson's tables have many errors. There are 576 odd primitive abundant numbers (OPAN) having 4 distinct prime factors, the last of which is 3^10 5^5 17^4 251^2 = 970969744245403125. The next row, for 5 distinct prime factors, has over 100000 terms.
If the prime factors were counted with multiplicity, then the table would start with row 5, having 121 terms: (945, 1575, 2205, 3465, 4095, ..., 430815, 437745, 442365). Row 6 would start (7425, 28215, 29835, 33345, 34155, ...), and row 7, (81081, 121095, 164835, 182655, 189189, ...). - M. F. Hasler, Jul 27 2016 [See A287646.]

Examples

			From _M. F. Hasler_, Jul 27 2016: (Start)
Row 3: 945, 1575, 2205, 7425, 78975, 131625, 342225, 570375;
Row 4: 3465, 4095, 5355, ...(571 more)..., 249450402403828125, 970969744245403125;
Row 5: 15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, ...
Row 6: 692835, 838695, 937365, 1057485, 1130415, 1181895, 1225785, 1263405, ...
Row 7: 22309287, 28129101, 30069039, 34051017, 35888853, 36399363, ...
The first column is A188342 = (945, 3465, 15015, 692835, 22309287, ...) (End)
		

Crossrefs

Row lengths are A303933.
Cf. A006038 (all OPAN), A188342 (first column of this table), A287646 (variant where row n contains all OPAN with n prime factors counted with multiplicity).

A287590 Number of squarefree odd primitive abundant numbers with n prime factors.

Original entry on oeis.org

0, 0, 0, 0, 87, 14172, 101053625, 3475496953795289
Offset: 1

Views

Author

M. F. Hasler, May 26 2017

Keywords

Comments

See A287581 for the largest squarefree odd primitive abundant number (A249263) with n prime factors.
Squarefree odd primitive abundant numbers (SOPAN) with r prime factors are of the form N = p_1 * ... * p_r with 3 <= p_1 < ... < p_r and such that the abundancy A(p_1 * ... * p_k) < 2 for k < r and > 2 for k = r, where A(N) = sigma(N)/N. For r < 5 this can never be satisfied, the largest possible value is A(3*5*7*11) = 2 - 2/385.

Examples

			From _M. F. Hasler_, Jun 26 2017: (Start)
All squarefree odd primitive abundant numbers (SOPAN) have at least 5 prime factors, since the abundancy of a product of 4 distinct odd primes cannot be larger than that of N = 3*5*7*11, with A000203(N)/N = 4/3 * 6/5 * 8/7 * 12/11 = 768/385 = 2 - 2/385 < 2.
The 87 SOPAN with 5 prime factors range from A249263(1) = 15015 = 3*5*7*11*13 to  A287581(5) = A249263(87) = 442365 = 3*5*7*11*383.
The 14172 SOPAN with 6 prime factors range from A188342(6) = A249263(88) = 692835 = 3*5*11*13*17*19 to A287581(6) = 13455037365  = 3*5*7*11*389*29947.
The 101053625 SOPAN with 7 prime factors range from A188342(7) = A249263(608) = 22309287 = 3*7*11*13*17*19*23 to A287581(7) = 1725553747427327895 = 3*5*7*11*389*29959*128194559. (End)
		

Crossrefs

Programs

  • PARI
    A287590(r,p=2,a=2,s=0,n=precprime(1\(a-1)))={ r>1 || return(primepi(n)-primepi(p)); (pa && while( 0A287590(r-1,p=nextprime(p+1),a/(1+1/p)),s+=n); s}

Extensions

Added a(8) calculated by Gianluca Amato. - M. F. Hasler, Jun 26 2017
Example for 101053625 corrected by Peter Munn, Jul 23 2017

A285993 Largest odd abundant number (A005231) equal to the product of n consecutive primes.

Original entry on oeis.org

15015, 255255, 4849845, 111546435, 33426748355, 1236789689135, 50708377254535, 2180460221945005, 102481630431415235, 5431526412865007455, 320460058359035439845, 19548063559901161830545, 1309720258513377842646515, 1357656019974967471687377449, 107254825578022430263302818471
Offset: 5

Views

Author

M. F. Hasler, Apr 30 2017

Keywords

Comments

The smallest term is a(5) = 3*5*7*11*13, there is no odd abundant number (A005231) equal to the product of less than 5 consecutive primes.
The smallest odd abundant number (A005231) equal to the product of n consecutive primes is equal (when it exists, i.e., for n >= 5) to the least odd number with n (distinct) prime divisors, equal to the product of the first n odd primes = A070826(n+1) = A002110(n+1)/2.
See A188342 = (945, 3465, 15015, 692835, 22309287, ...) for the least odd primitive abundant number (A006038) with n distinct prime factors, and A275449 for the least odd primitive abundant number with n prime factors counted with multiplicity.
The terms are in general not primitive abundant numbers (A091191), in particular this cannot be the case when a(n) is a multiple of a(n-1), as is the case for most of the terms, for which a(n) = a(n-1)*A117366(a(n-1)). In the other event, spf(a(n)) = nextprime(spf(a(n-1))), and a(n) is in A007741(2,3,4...). These are exactly the primitive terms in this sequence.

Examples

			For n < 5, there is no odd abundant number equal to the product of n distinct primes.
For 5 <= n <= 8, the largest odd abundant number equal to the product of n consecutive primes is 3*...*prime(n+1).
For 9 <= n <= 17, the largest odd abundant number equal to the product of n consecutive primes is 5*...*prime(n+2).
For 18 <= n <= 30, the largest odd abundant number equal to the product of n consecutive primes is 7*...*prime(n+3).
For 31 <= n <= 45, the largest odd abundant number equal to the product of n consecutive primes is 11*...*prime(n+4).
For 46 <= n <= 66, the largest odd abundant number equal to the product of n consecutive primes is 13*...*prime(n+5).
		

Crossrefs

A subsequence of A112643 (odd squarefree abundant numbers); see also A108227 (~ A107705) which give indices of primitive terms = those with smallest prime factor larger than that of earlier terms.

Programs

  • PARI
    a(r,f=vector(r,i,prime(i+1)),o)={ while(sigma(factorback(f),-1)>2, o=f; f=concat(f[^1],nextprime(f[r]+1)));factorback(o)} \\ Intentionally throws an error when n < 5.

Formula

a(n) >= a(n-1)*p where p = A117366(a(n-1)) = A151800(A006530(a(n-1))) = nextprime(gpf(a(n-1))), an odd abundant number equal to the product of n consecutive primes. We have strict inequality for n = 9, 18, 31, 46, 67, ..., in which case a(n) = a(n-1)*p*p'/q, where p' = nextprime(p), q = least prime factor of a(n-1). This is the case if a(n) is in A007741.

A275449 Least odd primitive abundant number with n prime factors, counted with multiplicity.

Original entry on oeis.org

945, 7425, 81081, 78975, 1468935, 6375105, 85930875, 307879299, 1519691625, 8853249375, 17062700625, 535868474337, 2241870572475, 12759034818375, 64260996890625, 866566808687853, 2964430488515625, 23849823423763953, 100139192108634825, 772934641006640625, 2696807941801171875
Offset: 5

Views

Author

M. F. Hasler, Jul 27 2016

Keywords

Comments

See A188342 = (945, 3465, 15015, 692835, 22309287, ...) for the least odd primitive abundant number (A006038) with n distinct prime factors.
At least up to a(11), the greatest prime factor gpf(a(n)) = Q(a(n)/gpf(a(n))), where Q(N) = floor(sigma(N)/(2N-sigma(N))). In general one has to apply the precprime() function A007917 to this integer.
The above holds also for a(12)-a(15). Lars Blomberg, Apr 09 2018

Examples

			We have:   a(5) = 945 = 3^3 * 5   * 7,
          a(6) = 7425 = 3^3 * 5^2 * 11,
         a(7) = 81081 = 3^4 *  7  * 11 * 13,
        a(8) =  78975 = 3^5 * 5^2 * 13,
       a(9) = 1468935 = 3^6 * 5   * 13 * 31,
      a(10) = 6375105 = 3^7 * 5   * 11 * 53,
     a(11) = 85930875 = 3^6 * 5^3 * 23 * 41,
    a(12) = 307879299 = 3^7 * 7^2 * 13^2 * 17,
   a(13) = 1519691625 = 3^8 * 5^3 * 17 * 109,
   a(14) = 8853249375 = 3^8 * 5^4 * 17 * 127,
  a(15) = 17062700625 = 3^9 * 5^4 * 19 * 73.
		

Crossrefs

Programs

  • PARI
    a(n)=for(i=1,#A=A006038,bigomega(A[i])==n&&return(A[i])) \\ Provided that A006038 is defined as a set with enough elements. - M. F. Hasler, Jul 27 2016
    
  • PARI
    generate(A, B, n) = A=max(A, 3^n); (f(m, p, k) = my(list=List()); if(sigma(m) > 2*m, return(list)); if(k==1, forprime(q=max(p, ceil(A/m)), B\m, my(t=m*q); if(sigma(t) > 2*t, my(F=factor(t)[,1], ok=1); for(i=1, #F, if(sigma(t\F[i], -1) > 2, ok=0; break)); if(ok, listput(list, t)))), forprime(q = p, sqrtnint(B\m, k), list=concat(list, f(m*q, q, k-1)))); list); vecsort(Vec(f(1, 3, n)));
    a(n) = my(x=3^n, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 10 2024

Extensions

a(12)-a(15) from Lars Blomberg, Apr 09 2018
a(16)-a(25) from Daniel Suteu, Feb 10 2024
Showing 1-6 of 6 results.