A006038
Odd primitive abundant numbers.
Original entry on oeis.org
945, 1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 7425, 8085, 8415, 8925, 9135, 9555, 9765, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 18585, 19215, 19635, 21105, 21945, 22365, 22995, 23205, 24885, 25935, 26145, 26565, 28035, 28215
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..10000
- L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American Journal of Mathematics 35 (1913), pp. 413-422.
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Jun. 1991
- Jacob Liddy, An algorithm to determine all odd primitive abundant numbers with d prime divisors, Honors Research Projects (2018), 728.
- Eric Weisstein's World of Mathematics, Primitive Abundant Number
-
a006038 n = a006038_list !! (n-1)
a006038_list = filter f [1, 3 ..] where
f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)
where pdivs = a027751_row x
-- Reinhard Zumkeller, Jan 31 2014
-
isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:
isA005100 := proc(n) is(numtheory[sigma](n) < 2*n ); end proc:
isA006038 := proc(n) local d; if type(n,'odd') and isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if not isA005100(d) then return false; end if; end do: return true;else false; end if; end proc:
n := 1 ; for a from 1 by 2 do if isA006038(a) then printf("%d %d\n",n,a) ; n := n+1 ; end if; end do: # R. J. Mathar, Mar 28 2011
-
t = {}; n = 1; While[Length[t] < 50, n = n + 2; If[DivisorSigma[1, n] > 2 n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
-
is(n)=n%2 && sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Jun 10 2013
-
is_A006038(n)=bittest(n,0) && sigma(n)>2*n && !for(i=1,#f=factor(n)[,1],sigma(n\f[i],-1)>2&&return) \\ More than 5 times faster. - M. F. Hasler, Jul 28 2016
A249263
Primitive, odd, squarefree abundant numbers.
Original entry on oeis.org
15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245, 95865, 102795, 112035, 116655, 118965
Offset: 1
Cf.
A188342 (least with n factors),
A287581 (largest with n factors),
A287590 (number of terms with n factors).
-
# see A112643 and A006038 for the coding of isA112643 and isA006038
isA249263 := proc(n)
isA112643(n) and isA006038(n) ;
end proc:
for n from 1 do
if isA249263(n) then
print(n);
end if;
end do: # R. J. Mathar, Nov 10 2014
-
PrimAbunQ[n_] := Module[{x, y},
y = Most[Divisors[n]]; x = DivisorSigma[1, y];
DivisorSigma[1, n] > 2 n && AllTrue[x/y, # <= 2 &]];
Select[Range[1, 120000, 2], PrimAbunQ[#] &&
AllTrue[FactorInteger[#][[All, 2]], # == 1 &] &] (* Robert Price, Sep 26 2019 *)
-
v=[]; for(k=1, 10^5, n=2*k+1; if(issquarefree(n) && sigma(n)>2*n, for(i=1, #v, n%v[i] || next(2)); print1(n, ", "); v=concat(v, n))) \\ Improved (from 20 sec to 0.2 sec) by M. F. Hasler, May 27 2017
A188439
Irregular triangle of odd primitive abundant numbers (A006038) in which row n has numbers with n distinct prime factors.
Original entry on oeis.org
945, 1575, 2205, 7425, 78975, 131625, 342225, 570375, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 8085, 8415, 8925, 9135, 9555, 9765, 11655, 12705, 12915, 13545, 14805, 16695, 18585, 19215, 21105, 22365, 22995, 24885, 26145, 28035, 28215, 29835
Offset: 3
From _M. F. Hasler_, Jul 27 2016: (Start)
Row 3: 945, 1575, 2205, 7425, 78975, 131625, 342225, 570375;
Row 4: 3465, 4095, 5355, ...(571 more)..., 249450402403828125, 970969744245403125;
Row 5: 15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, ...
Row 6: 692835, 838695, 937365, 1057485, 1130415, 1181895, 1225785, 1263405, ...
Row 7: 22309287, 28129101, 30069039, 34051017, 35888853, 36399363, ...
The first column is A188342 = (945, 3465, 15015, 692835, 22309287, ...) (End)
- T. D. Noe, Rows n = 3..4, flattened
- L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American Journal of Mathematics 35 (1913), pp. 413-422.
- A. Ferrier, Table errata 176, MTAC 4 (1950), 222.
- Fritz Herzog, Table Errata 571, Math. Comp. 34 (1980), 652.
- T. D. Noe, 576 odd primitive abundant numbers, factored
Cf.
A006038 (all OPAN),
A188342 (first column of this table),
A287646 (variant where row n contains all OPAN with n prime factors counted with multiplicity).
A287590
Number of squarefree odd primitive abundant numbers with n prime factors.
Original entry on oeis.org
0, 0, 0, 0, 87, 14172, 101053625, 3475496953795289
Offset: 1
From _M. F. Hasler_, Jun 26 2017: (Start)
All squarefree odd primitive abundant numbers (SOPAN) have at least 5 prime factors, since the abundancy of a product of 4 distinct odd primes cannot be larger than that of N = 3*5*7*11, with A000203(N)/N = 4/3 * 6/5 * 8/7 * 12/11 = 768/385 = 2 - 2/385 < 2.
The 87 SOPAN with 5 prime factors range from A249263(1) = 15015 = 3*5*7*11*13 to A287581(5) = A249263(87) = 442365 = 3*5*7*11*383.
The 14172 SOPAN with 6 prime factors range from A188342(6) = A249263(88) = 692835 = 3*5*11*13*17*19 to A287581(6) = 13455037365 = 3*5*7*11*389*29947.
The 101053625 SOPAN with 7 prime factors range from A188342(7) = A249263(608) = 22309287 = 3*7*11*13*17*19*23 to A287581(7) = 1725553747427327895 = 3*5*7*11*389*29959*128194559. (End)
-
A287590(r,p=2,a=2,s=0,n=precprime(1\(a-1)))={ r>1 || return(primepi(n)-primepi(p)); (pa && while( 0A287590(r-1,p=nextprime(p+1),a/(1+1/p)),s+=n); s}
Added a(8) calculated by Gianluca Amato. -
M. F. Hasler, Jun 26 2017
Example for 101053625 corrected by
Peter Munn, Jul 23 2017
A285993
Largest odd abundant number (A005231) equal to the product of n consecutive primes.
Original entry on oeis.org
15015, 255255, 4849845, 111546435, 33426748355, 1236789689135, 50708377254535, 2180460221945005, 102481630431415235, 5431526412865007455, 320460058359035439845, 19548063559901161830545, 1309720258513377842646515, 1357656019974967471687377449, 107254825578022430263302818471
Offset: 5
For n < 5, there is no odd abundant number equal to the product of n distinct primes.
For 5 <= n <= 8, the largest odd abundant number equal to the product of n consecutive primes is 3*...*prime(n+1).
For 9 <= n <= 17, the largest odd abundant number equal to the product of n consecutive primes is 5*...*prime(n+2).
For 18 <= n <= 30, the largest odd abundant number equal to the product of n consecutive primes is 7*...*prime(n+3).
For 31 <= n <= 45, the largest odd abundant number equal to the product of n consecutive primes is 11*...*prime(n+4).
For 46 <= n <= 66, the largest odd abundant number equal to the product of n consecutive primes is 13*...*prime(n+5).
A subsequence of
A112643 (odd squarefree abundant numbers); see also
A108227 (~
A107705) which give indices of primitive terms = those with smallest prime factor larger than that of earlier terms.
-
a(r,f=vector(r,i,prime(i+1)),o)={ while(sigma(factorback(f),-1)>2, o=f; f=concat(f[^1],nextprime(f[r]+1)));factorback(o)} \\ Intentionally throws an error when n < 5.
A275449
Least odd primitive abundant number with n prime factors, counted with multiplicity.
Original entry on oeis.org
945, 7425, 81081, 78975, 1468935, 6375105, 85930875, 307879299, 1519691625, 8853249375, 17062700625, 535868474337, 2241870572475, 12759034818375, 64260996890625, 866566808687853, 2964430488515625, 23849823423763953, 100139192108634825, 772934641006640625, 2696807941801171875
Offset: 5
We have: a(5) = 945 = 3^3 * 5 * 7,
a(6) = 7425 = 3^3 * 5^2 * 11,
a(7) = 81081 = 3^4 * 7 * 11 * 13,
a(8) = 78975 = 3^5 * 5^2 * 13,
a(9) = 1468935 = 3^6 * 5 * 13 * 31,
a(10) = 6375105 = 3^7 * 5 * 11 * 53,
a(11) = 85930875 = 3^6 * 5^3 * 23 * 41,
a(12) = 307879299 = 3^7 * 7^2 * 13^2 * 17,
a(13) = 1519691625 = 3^8 * 5^3 * 17 * 109,
a(14) = 8853249375 = 3^8 * 5^4 * 17 * 127,
a(15) = 17062700625 = 3^9 * 5^4 * 19 * 73.
-
a(n)=for(i=1,#A=A006038,bigomega(A[i])==n&&return(A[i])) \\ Provided that A006038 is defined as a set with enough elements. - M. F. Hasler, Jul 27 2016
-
generate(A, B, n) = A=max(A, 3^n); (f(m, p, k) = my(list=List()); if(sigma(m) > 2*m, return(list)); if(k==1, forprime(q=max(p, ceil(A/m)), B\m, my(t=m*q); if(sigma(t) > 2*t, my(F=factor(t)[,1], ok=1); for(i=1, #F, if(sigma(t\F[i], -1) > 2, ok=0; break)); if(ok, listput(list, t)))), forprime(q = p, sqrtnint(B\m, k), list=concat(list, f(m*q, q, k-1)))); list); vecsort(Vec(f(1, 3, n)));
a(n) = my(x=3^n, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 10 2024
Showing 1-6 of 6 results.
Comments