A188342 Smallest odd primitive abundant number (A006038) having n distinct prime factors.
945, 3465, 15015, 692835, 22309287, 1542773001, 33426748355, 1635754104985, 114761064312895, 9316511857401385, 879315530560980695, 88452776289145528645, 2792580508557308832935, 428525983200229616718445, 42163230434005200984080045, 1357656019974967471687377449
Offset: 3
Keywords
Examples
From _M. F. Hasler_, Jul 17 2016: (Start) 945 = 3^3 * 5 * 7 3465 = 3^2 * 5 * 7 * 11 15015 = 3 * 5 * 7 * 11 * 13 692835 = 3 * 5 * 11 * 13 * 17 * 19 (n=6: gpf increases by 2 primes) 22309287 = 3 * 7 * 11 * 13 * 17 * 19 * 23 1542773001 = 3 * 7 * 11 * 17 * 19 * 23 * 29 * 31 33426748355 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31 1635754104985 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 37 * 41 (here too) 114761064312895 = 5 * 7 * 11 * 13 * 17 * 23 * 29 * 31 * 37 * 41 * 43 9316511857401385 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47 879315530560980695 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 53 * 59 * 61 (n=13: gpf increases for the first time by 3 primes) (End)
Links
- Daniel Suteu, Table of n, a(n) for n = 3..27
- L. E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American Journal of Mathematics 35 (1913), pp. 413-422.
- H. N. Shapiro, Note on a theorem of Dickson, Bull Amer. Math. Soc. 55 (4) (1949), 450-452
Programs
-
Mathematica
PrimAbunQ[n_] := Module[{x, y}, y = Most[Divisors[n]]; x = DivisorSigma[1, y]; DivisorSigma[1, n] > 2 n && AllTrue[x/y, # <= 2 &]]; Table[k = 1; While[! PrimAbunQ[k] || Length[FactorInteger[k][[All, 1]]] != n, k += 2]; k, {n, 3, 6}] (* Robert Price, Sep 26 2019 *)
-
PARI
A188342=[0,0,945,3465]; a(n,D(n)=n\6+1)={while(n>#A188342, my(S=#A188342, T=factor(A188342[S])[,1], M=[primepi(T[1]),primepi(T[#T])+D(S++)], best=prime(M[2])^S); forvec(v=vector(S,i,M), best>(T=prod(i=1,#v,prime(v[i]))) && (S=prod(i=1,#v,prime(v[i])+1)-T*2)>0 && S*prime(v[#v])
A188342=concat(A188342,best));A188342[n]} \\ Assuming a(n) squarefree for n>4, search is exhaustive within the limit primepi(gpf(a(n))) <= primepi(gpf(a(n-1)))+D(n), with D(n) given as optional 2nd arg. - M. F. Hasler, Jul 17 2016 -
PARI
generate(A, B, n) = A=max(A, vecprod(primes(n+1))\2); (f(m, p, j) = my(list=List()); if(sigma(m) > 2*m, return(list)); forprime(q=p, sqrtnint(B\m, j), my(v=m*q); while(v <= B, if(j==1, if(v>=A && sigma(v) > 2*v, my(F=factor(v)[,1], ok=1); for(i=1, #F, if(sigma(v\F[i], -1) > 2, ok=0; break)); if(ok, listput(list, v))), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, 3, n))); a(n) = my(x=vecprod(primes(n+1))\2, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 10 2024
Extensions
a(8)-a(12) from Donovan Johnson, Mar 29 2011
a(13) from Donovan Johnson, Mar 31 2011
a(14)-a(17) confirmed and a(18) from Daniel Suteu, Feb 10 2024
Comments