cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A188342 Smallest odd primitive abundant number (A006038) having n distinct prime factors.

Original entry on oeis.org

945, 3465, 15015, 692835, 22309287, 1542773001, 33426748355, 1635754104985, 114761064312895, 9316511857401385, 879315530560980695, 88452776289145528645, 2792580508557308832935, 428525983200229616718445, 42163230434005200984080045, 1357656019974967471687377449
Offset: 3

Views

Author

T. D. Noe, Mar 28 2011

Keywords

Comments

Dickson proves that there are only a finite number of odd primitive abundant numbers having n distinct prime factors. For n=3, there are 8 such numbers: 945, 1575, 2205, 7425, 78975, 131625, 342225, 570375. See A188439.
a(14) <= 88452776289145528645. - Donovan Johnson, Mar 31 2011
a(15) <= 2792580508557308832935, a(16) <= 428525983200229616718445, a(17) <= 42163230434005200984080045. If these a(n) are squarefree and don't have a greatest prime factor more than 3 primes away from that of the preceding term, then these bounds are the actual values of a(n). The PARI code needs only fractions of a second to compute further bounds, which under the given hypotheses are the actual values of a(n). - M. F. Hasler, Jul 17 2016
It appears that the terms are squarefree for n >= 5, so they yield also the smallest term of A249263 with n factors; see A287581 for the largest such, and A287590 for the number of such terms with n factors. (For nonsquarefree odd abundant numbers, this seems to be known only for n = 3 and n = 4 prime factors (8 respectively 576 terms), cf. A188439.) - M. F. Hasler, May 29 2017
Comment from Don Reble, Jan 17 2023: (Start)
"If these a(n) are squarefree and don't have a greatest prime factor more than 3 primes away from that of the preceding term, then these bounds are the actual values of a(n)."
This conjecture is correct up to a(50). (End)

Examples

			From _M. F. Hasler_, Jul 17 2016: (Start)
               945 = 3^3 * 5 * 7
              3465 = 3^2 * 5 * 7 * 11
             15015 = 3 * 5 * 7 * 11 * 13
            692835 = 3 * 5 * 11 * 13 * 17 * 19     (n=6: gpf increases by 2 primes)
          22309287 = 3 * 7 * 11 * 13 * 17 * 19 * 23
        1542773001 = 3 * 7 * 11 * 17 * 19 * 23 * 29 * 31
       33426748355 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 31
     1635754104985 = 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 37 * 41     (here too)
   114761064312895 = 5 * 7 * 11 * 13 * 17 * 23 * 29 * 31 * 37 * 41 * 43
  9316511857401385 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 43 * 47
879315530560980695 = 5 * 7 * 13 * 17 * 19 * 23 * 29 * 31 * 37 * 41 * 53 * 59 * 61 (n=13: gpf increases for the first time by 3 primes) (End)
		

Crossrefs

Programs

  • Mathematica
    PrimAbunQ[n_] := Module[{x, y},
       y = Most[Divisors[n]]; x = DivisorSigma[1, y];
       DivisorSigma[1, n] > 2 n  &&  AllTrue[x/y, # <= 2  &]];
    Table[k = 1;
     While[! PrimAbunQ[k] || Length[FactorInteger[k][[All, 1]]] != n,
    k += 2]; k, {n, 3, 6}] (* Robert Price, Sep 26 2019 *)
  • PARI
    A188342=[0,0,945,3465]; a(n,D(n)=n\6+1)={while(n>#A188342, my(S=#A188342, T=factor(A188342[S])[,1], M=[primepi(T[1]),primepi(T[#T])+D(S++)], best=prime(M[2])^S); forvec(v=vector(S,i,M), best>(T=prod(i=1,#v,prime(v[i]))) && (S=prod(i=1,#v,prime(v[i])+1)-T*2)>0 && S*prime(v[#v])A188342=concat(A188342,best));A188342[n]} \\ Assuming a(n) squarefree for n>4, search is exhaustive within the limit primepi(gpf(a(n))) <= primepi(gpf(a(n-1)))+D(n), with D(n) given as optional 2nd arg. - M. F. Hasler, Jul 17 2016
    
  • PARI
    generate(A, B, n) = A=max(A, vecprod(primes(n+1))\2); (f(m, p, j) = my(list=List()); if(sigma(m) > 2*m, return(list)); forprime(q=p, sqrtnint(B\m, j), my(v=m*q); while(v <= B, if(j==1, if(v>=A && sigma(v) > 2*v, my(F=factor(v)[,1], ok=1); for(i=1, #F, if(sigma(v\F[i], -1) > 2, ok=0; break)); if(ok, listput(list, v))), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, 3, n)));
    a(n) = my(x=vecprod(primes(n+1))\2, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 10 2024

Extensions

a(8)-a(12) from Donovan Johnson, Mar 29 2011
a(13) from Donovan Johnson, Mar 31 2011
a(14)-a(17) confirmed and a(18) from Daniel Suteu, Feb 10 2024

A188439 Irregular triangle of odd primitive abundant numbers (A006038) in which row n has numbers with n distinct prime factors.

Original entry on oeis.org

945, 1575, 2205, 7425, 78975, 131625, 342225, 570375, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 8085, 8415, 8925, 9135, 9555, 9765, 11655, 12705, 12915, 13545, 14805, 16695, 18585, 19215, 21105, 22365, 22995, 24885, 26145, 28035, 28215, 29835
Offset: 3

Views

Author

T. D. Noe, Mar 31 2011

Keywords

Comments

The initial row has 8 terms. Row n begins with A188342(n). Dickson proves that each row has a finite number of terms. He lists the first two rows in factored form in his paper. However, as Ferrier and Herzog report, Dickson's tables have many errors. There are 576 odd primitive abundant numbers (OPAN) having 4 distinct prime factors, the last of which is 3^10 5^5 17^4 251^2 = 970969744245403125. The next row, for 5 distinct prime factors, has over 100000 terms.
If the prime factors were counted with multiplicity, then the table would start with row 5, having 121 terms: (945, 1575, 2205, 3465, 4095, ..., 430815, 437745, 442365). Row 6 would start (7425, 28215, 29835, 33345, 34155, ...), and row 7, (81081, 121095, 164835, 182655, 189189, ...). - M. F. Hasler, Jul 27 2016 [See A287646.]

Examples

			From _M. F. Hasler_, Jul 27 2016: (Start)
Row 3: 945, 1575, 2205, 7425, 78975, 131625, 342225, 570375;
Row 4: 3465, 4095, 5355, ...(571 more)..., 249450402403828125, 970969744245403125;
Row 5: 15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, ...
Row 6: 692835, 838695, 937365, 1057485, 1130415, 1181895, 1225785, 1263405, ...
Row 7: 22309287, 28129101, 30069039, 34051017, 35888853, 36399363, ...
The first column is A188342 = (945, 3465, 15015, 692835, 22309287, ...) (End)
		

Crossrefs

Row lengths are A303933.
Cf. A006038 (all OPAN), A188342 (first column of this table), A287646 (variant where row n contains all OPAN with n prime factors counted with multiplicity).

A136476 Odd primitive abundant numbers n such that n = x^2 + x + y^2 with y^2 < 2*x; a subsequence of A006038.

Original entry on oeis.org

9555, 12705, 15015, 18585, 21105, 32445, 41055, 43065, 46035, 47355, 51765, 125895, 129465, 228735, 257565, 324555, 375165, 400785, 409185, 537285, 693225, 4513509, 5569641, 5581695, 5959065, 6084351, 6338535, 8824095, 9597315
Offset: 1

Views

Author

Pierre CAMI, Jan 02 2008

Keywords

Comments

x values in A136477 and y values in A136478

Examples

			9555=97^2+97+7^2 and 9555 odd primitive abundant number
		

Crossrefs

A379950 Numbers k such that k^2 is an odd primitive abundant number (A006038).

Original entry on oeis.org

585, 32085, 41925, 46665, 121605, 134589, 181305, 212175, 388455, 495465, 544065, 839865, 1061565, 1152921, 1165515, 1243275, 1247103, 1335411, 1676829, 2151075, 2290869, 2478075, 2771835, 2838165, 3016725, 3122847, 3156795, 4571415, 4738041, 5153841, 5558985, 6125049, 7471425, 7676775, 7780101, 7822425, 8259867
Offset: 1

Views

Author

Antti Karttunen, Jan 07 2025

Keywords

Crossrefs

Square roots of A379949.
Subsequence of A174830.

Programs

  • PARI
    isok(k) = if(!(k % 2), 0, my(f = factor(k)); for(i = 1, #f~, f[i, 2] *= 2); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, f[i, 2] -= 1; if(sigma(f, -1) > 2, return(0)); f[i, 2] += 1); 1); \\ Amiram Eldar, Mar 12 2025

Formula

a(n) = A000196(A379949(n)).

A005101 Abundant numbers (sum of divisors of m exceeds 2m).

Original entry on oeis.org

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270
Offset: 1

Views

Author

Keywords

Comments

A number m is abundant if sigma(m) > 2m (this sequence), perfect if sigma(m) = 2m (cf. A000396), or deficient if sigma(m) < 2m (cf. A005100), where sigma(m) is the sum of the divisors of m (A000203).
While the first even abundant number is 12 = 2^2*3, the first odd abundant is 945 = 3^3*5*7, the 232nd abundant number!
It appears that for m abundant and > 23, 2*A001055(m) - A101113(m) is NOT 0. - Eric Desbiaux, Jun 01 2009
If m is a term so is every positive multiple of m. "Primitive" terms are in A091191.
If m=6k (k>=2), then sigma(m) >= 1 + k + 2*k + 3*k + 6*k > 12*k = 2*m. Thus all such m are in the sequence.
According to Deléglise (1998), the abundant numbers have natural density 0.2474 < A(2) < 0.2480. Thus the n-th abundant number is asymptotic to 4.0322*n < n/A(2) < 4.0421*n. - Daniel Forgues, Oct 11 2015
From Bob Selcoe, Mar 28 2017 (prompted by correspondence with Peter Seymour): (Start)
Applying similar logic as the proof that all multiples of 6 >= 12 appear in the sequence, for all odd primes p:
i) all numbers of the form j*p*2^k (j >= 1) appear in the sequence when p < 2^(k+1) - 1;
ii) no numbers appear when p > 2^(k+1) - 1 (i.e., are deficient and are in A005100);
iii) when p = 2^(k+1) - 1 (i.e., perfect numbers, A000396), j*p*2^k (j >= 2) appear.
Note that redundancies are eliminated when evaluating p only in the interval [2^k, 2^(k+1)].
The first few even terms not of the forms i or iii are {70, 350, 490, 550, 572, 650, 770, ...}. (End)

References

  • L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Pure Appl. Math., Vol. 44 (1913), pp. 264-296.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Cf. A005231 and A006038 (odd abundant numbers).
Cf. A094268 (n consecutive abundant numbers).
Cf. A173490 (even abundant numbers).
Cf. A001065.
Cf. A000396 (perfect numbers).
Cf. A302991.

Programs

  • Haskell
    a005101 n = a005101_list !! (n-1)
    a005101_list = filter (\x -> a001065 x > x) [1..]
    -- Reinhard Zumkeller, Nov 01 2015, Jan 21 2013
    
  • Maple
    with(numtheory): for n from 1 to 270 do if sigma(n)>2*n then printf(`%d,`,n) fi: od:
    isA005101 := proc(n)
        simplify(numtheory[sigma](n) > 2*n) ;
    end proc: # R. J. Mathar, Jun 18 2015
    A005101 := proc(n)
        option remember ;
        local a ;
        if n =1 then
            12 ;
        else
            a := procname(n-1)+1 ;
            while numtheory[sigma](a) <= 2*a do
                a := a+1 ;
            end do ;
            a ;
        end if ;
    end proc: # R. J. Mathar, Oct 11 2017
  • Mathematica
    abQ[n_] := DivisorSigma[1, n] > 2n; A005101 = Select[ Range[270], abQ[ # ] &] (* Robert G. Wilson v, Sep 15 2005 *)
    Select[Range[300], DivisorSigma[1, #] > 2 # &] (* Vincenzo Librandi, Oct 12 2015 *)
  • PARI
    isA005101(n) = (sigma(n) > 2*n) \\ Michael B. Porter, Nov 07 2009
    
  • Python
    from sympy import divisors
    def ok(n): return sum(divisors(n)) > 2*n
    print(list(filter(ok, range(1, 271)))) # Michael S. Branicky, Aug 29 2021
    
  • Python
    from sympy import divisor_sigma
    from itertools import count, islice
    def A005101_gen(startvalue=1): return filter(lambda n:divisor_sigma(n) > 2*n, count(max(startvalue, 1))) # generator of terms >= startvalue
    A005101_list = list(islice(A005101_gen(), 20)) # Chai Wah Wu, Jan 14 2022

Formula

a(n) is asymptotic to C*n with C=4.038... (Deléglise, 1998). - Benoit Cloitre, Sep 04 2002
A005101 = { n | A033880(n) > 0 }. - M. F. Hasler, Apr 19 2012
A001065(a(n)) > a(n). - Reinhard Zumkeller, Nov 01 2015

A005231 Odd abundant numbers (odd numbers m whose sum of divisors exceeds 2m).

Original entry on oeis.org

945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11025, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955
Offset: 1

Views

Author

Keywords

Comments

While the first even abundant number is 12 = 2^2*3, the first odd abundant is 945 = 3^3*5*7, the 232nd abundant number.
Schiffman notes that 945+630k is in this sequence for all k < 52. Most of the first initial terms are of the form. Among the 1996 terms below 10^6, 1164 terms are of that form, and only 26 terms are not divisible by 5, cf. A064001. - M. F. Hasler, Jul 16 2016
From M. F. Hasler, Jul 28 2016: (Start)
Any multiple of an abundant number is again abundant, see A006038 for primitive terms, i.e., those which are not a multiple of an earlier term.
An odd abundant number must have at least 3 distinct prime factors, and 5 prime factors when counted with multiplicity (A001222), whence a(1) = 3^3*5*7. To see this, write the relative abundancy A(N) = sigma(N)/N = sigma[-1](N) as A(Product p_i^e_i) = Product (p_i-1/p_i^e_i)/(p_i-1) < Product p_i/(p_i-1).
See A115414 for terms not divisible by 3, A064001 for terms not divisible by 5, A112640 for terms coprime to 5*7, and A047802 for other generalizations.
As of today, we don't know of a difference between this set S of odd abundant numbers and the set S' of odd semiperfect numbers: Elements of S' \ S would be perfect (A000396), and elements of S \ S' would be weird (A006037), but no odd weird or perfect number is known. (End)
For any term m in this sequence, A064989(m) is also an abundant number (in A005101), and for any term x in A115414, A064989(x) is in this sequence. If there are no odd perfect numbers, then applying A064989 to these terms and sorting into ascending order gives A337386. - Antti Karttunen, Aug 28 2020
There exist infinitely many terms m such that 2*m+1 is also a term. An example of such a term is given by m = 985571808130707987847768908867571007187. - Max Alekseyev, Nov 16 2023

References

  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 13.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Programs

  • Maple
    A005231 := proc(n) option remember ; local a ; if n = 1 then 945 ; else for a from procname(n-1)+2 by 2 do if numtheory[sigma](a) > 2*a then return a; end if; end do: end if; end proc: # R. J. Mathar, Mar 20 2011
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > 2n; Select[1 + 2Range@ 9000, fQ] (* Robert G. Wilson v, Mar 20 2011 *)
  • PARI
    je=[]; forstep(n=1,15000,2, if(sigma(n)>2*n, je=concat(je,n))); je
    
  • PARI
    is_A005231(n)={bittest(n,0)&&sigma(n)>2*n} \\ M. F. Hasler, Jul 28 2016
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=945,lim\1, if(n[2][1,1]>2 && sigma(n,-1)>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Apr 21 2022

Formula

a(n) ~ k*n for some constant k (perhaps around 500). - Charles R Greathouse IV, Apr 21 2022
482.8 < k < 489.8 (based on density bounds by Kobayashi et al., 2009). - Amiram Eldar, Jul 17 2022

Extensions

More terms from James Sellers

A091191 Primitive abundant numbers: abundant numbers (A005101) having no abundant proper divisor.

Original entry on oeis.org

12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114, 138, 174, 186, 196, 222, 246, 258, 272, 282, 304, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 550, 572, 582, 606, 618, 642, 644, 650, 654, 678, 748, 762, 786, 812, 822
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 27 2003

Keywords

Comments

A080224(a(n)) = 1.
This is a supersequence of the primitive abundant number sequence A071395, since many of these numbers will be positive integer multiples of the perfect numbers (A000396). - Timothy L. Tiffin, Jul 15 2016
If the terms of A071395 are removed from this sequence, then the resulting sequence will be A275082. - Timothy L. Tiffin, Jul 16 2016

Examples

			12 is a term since 1, 2, 3, 4, and 6 (the proper divisors of 12) are either deficient or perfect numbers, and thus not abundant. - _Timothy L. Tiffin_, Jul 15 2016
		

Crossrefs

Cf. A006038 (odd terms), A005101 (abundant numbers), A091192.
Cf. A027751, A071395 (subsequence), supersequence of A275082.
Cf. A294930 (characteristic function), A294890.

Programs

  • Haskell
    a091191 n = a091191_list !! (n-1)
    a091191_list = filter f [1..] where
       f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)
             where pdivs = a027751_row x
    -- Reinhard Zumkeller, Jan 31 2014
  • Maple
    isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:
    isA091191 := proc(n) local d; if isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if isA005101(d) then return false; end if; end do: return true; else false; end if; end proc:
    for n from 1 to 200 do if isA091191(n) then printf("%d\n",n) ; end if;end do: # R. J. Mathar, Mar 28 2011
  • Mathematica
    t = {}; n = 1; While[Length[t] < 100, n++; If[DivisorSigma[1, n] > 2*n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
    Select[Range@ 840, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    is(n)=sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Dec 05 2012
    

Formula

Erdős shows that a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 05 2012

A004490 Colossally abundant numbers: m for which there is a positive exponent epsilon such that sigma(m)/m^{1 + epsilon} >= sigma(k)/k^{1 + epsilon} for all k > 1, so that m attains the maximum value of sigma(m)/m^{1 + epsilon}.

Original entry on oeis.org

2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800, 160626866400, 321253732800, 9316358251200, 288807105787200, 2021649740510400, 6064949221531200, 224403121196654400
Offset: 1

Views

Author

N. J. A. Sloane, Jan 22 2001

Keywords

References

  • S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., 14 (1915), 347-407. Reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, pp. 78-129. See esp. pp. 87, 115.

Crossrefs

A subsequence of A004394 (superabundant numbers).
Cf. A002093 (highly abundant numbers), A002182, A005101 (abundant numbers), A006038, A189228 (superabundant numbers that are not colossally abundant).

Formula

a(n) = Product_{k=1..n} A073751(k). - Jeppe Stig Nielsen, Nov 28 2021

A071395 Primitive abundant numbers (abundant numbers all of whose proper divisors are deficient numbers).

Original entry on oeis.org

20, 70, 88, 104, 272, 304, 368, 464, 550, 572, 650, 748, 836, 945, 1184, 1312, 1376, 1430, 1504, 1575, 1696, 1870, 1888, 1952, 2002, 2090, 2205, 2210, 2470, 2530, 2584, 2990, 3128, 3190, 3230, 3410, 3465, 3496, 3770, 3944, 4030, 4070, 4095, 4216, 4288
Offset: 1

Views

Author

Joe McCauley (mccauley(AT)davesworld.net), Jun 12 2002

Keywords

Comments

This is a subsequence of the primitive abundant number sequence A091191, since none of these numbers are a positive integer multiple of a perfect number (A000396). - Timothy L. Tiffin, Jul 15 2016
If the terms of this sequence are removed from A091191, then the resulting sequence will be A275082. - Timothy L. Tiffin, Jul 16 2016
Numbers n such that A294927(n) = 0 and A294937(n) = 1. - Antti Karttunen, Nov 14 2017

Examples

			20 is a term since 1, 2, 4, 5, and 10 (the proper divisors of 20) are all deficient numbers. - _Timothy L. Tiffin_, Jul 15 2016
		

References

  • Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 46, also section B2, 1994.

Crossrefs

Cf. A006038, A000396, A005100, A005101, subsequence of A091191, A275082.

Programs

  • Maple
    abundance:= proc(n) option remember;  numtheory:-sigma(n)-2*n end proc:
    select(n -> abundance(n) > 0 and andmap(t -> abundance(t) < 0, numtheory:-divisors(n) minus {n}), [$1..10000]); # Robert Israel, Nov 15 2017
  • Mathematica
    Select[Range@ 5000, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ #] == 1 &] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    isA071395(v) = {if (sigma(v) <= 2*v, return (0)); fordiv (v, d, if ((d != v) && (sigma(d) >= 2*d), return (0));); return (1);} \\ Michel Marcus, Mar 10 2013

Extensions

Offset corrected by Donovan Johnson, Aug 28 2011

A006039 Primitive nondeficient numbers.

Original entry on oeis.org

6, 20, 28, 70, 88, 104, 272, 304, 368, 464, 496, 550, 572, 650, 748, 836, 945, 1184, 1312, 1376, 1430, 1504, 1575, 1696, 1870, 1888, 1952, 2002, 2090, 2205, 2210, 2470, 2530, 2584, 2990, 3128, 3190, 3230, 3410, 3465, 3496, 3770, 3944, 4030
Offset: 1

Views

Author

Keywords

Comments

A number n is nondeficient (A023196) iff it is abundant or perfect, that is iff A001065(n) is >= n. Since any multiple of a nondeficient number is itself nondeficient, we call a nondeficient number primitive iff all its proper divisors are deficient. - Jeppe Stig Nielsen, Nov 23 2003
Numbers whose proper multiples are all abundant, and whose proper divisors are all deficient. - Peter Munn, Sep 08 2020
As a set, shares with the sets of k-almost primes this property: no member divides another member and each positive integer not in the set is either a divisor of 1 or more members of the set or a multiple of 1 or more members of the set, but not both. See A337814 for proof etc. - Peter Munn, Apr 13 2022

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001065 (aliquot function), A023196 (nondeficient), A005101 (abundant), A091191.
Subsequences: A000396 (perfect), A071395 (primitive abundant), A006038 (odd primitive abundant), A333967, A352739.
Positions of 1's in A341620 and in A337690.
Cf. A180332, A337479, A337688, A337689, A337691, A337814, A338133 (sorted by largest prime factor), A338427 (largest prime(n)-smooth), A341619 (characteristic function), A342669.

Programs

  • Mathematica
    k = 1; lst = {}; While[k < 4050, If[DivisorSigma[1, k] >= 2 k && Min@Mod[k, lst] > 0, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Mar 09 2017 *)

Formula

Union of A000396 (perfect numbers) and A071395 (primitive abundant numbers). - M. F. Hasler, Jul 30 2016
Sum_{n>=1} 1/a(n) is in the interval (0.34842, 0.37937) (Lichtman, 2018). - Amiram Eldar, Jul 15 2020
Showing 1-10 of 37 results. Next