A073751 Prime numbers that when multiplied in order yield the sequence of colossally abundant numbers A004490.
2, 3, 2, 5, 2, 3, 7, 2, 11, 13, 2, 3, 5, 17, 19, 23, 2, 29, 31, 7, 3, 37, 41, 43, 2, 47, 53, 59, 5, 61, 67, 71, 73, 11, 79, 2, 83, 3, 89, 97, 13, 101, 103, 107, 109, 113, 127, 131, 137, 139, 2, 149, 151, 7, 157, 163, 167, 17, 173, 179, 181, 191, 193, 197, 199, 19, 211, 3
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- L. Alaoglu and P. Erdos, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56 (1944), 448-469. Errata
- Keith Briggs, Abundant numbers and the Riemann Hypothesis, Experimental Math., Vol. 16 (2006), p. 251-256.
- Young Ju Choie; Nicolas Lichiardopol; Pieter Moree; Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, 19 no. 2 (2007), pp. 357-372.
- J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543.
- T. Schwabhäuser, Preventing Exceptions to Robin's Inequality, arXiv preprint arXiv:1308.3678 [math.NT], 2013.
- Eric Weisstein's World of Mathematics, Colossally Abundant Number
Crossrefs
Cf. A004490.
Programs
-
Mathematica
pFactor[f_List] := Module[{p=f[[1]], k=f[[2]]}, N[Log[(p^(k+2)-1)/(p^(k+1)-1)]/Log[p]]-1]; maxN=100; f={{2, 1}, {3, 0}}; primes=1; lst={2}; x=Table[pFactor[f[[i]]], {i, primes+1}]; For[n=2, n<=maxN, n++, i=Position[x, Max[x]][[1, 1]]; AppendTo[lst, f[[i, 1]]]; f[[i, 2]]++; If[i>primes, primes++; AppendTo[f, {Prime[i+1], 0}]; AppendTo[x, pFactor[f[[ -1]]]]]; x[[i]]=pFactor[f[[i]]]]; lst
Comments