cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A330872 Numbers k such that k and k+1 are both primitive abundant numbers (A071395).

Original entry on oeis.org

82004, 158235, 516704, 2921535, 5801984, 10846016, 12374144, 12603824, 18738224, 24252074, 32409530, 33696975, 35356544, 36149295, 41078114, 42541190, 43485584, 65090864, 88304475, 90725775, 181480695, 183872535, 213261795, 233762528, 242301344, 254502495, 254630144
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2020

Keywords

Comments

Not to be confused with A283418 in which the primitive abundant numbers can have perfect numbers as divisors (as defined in A091191).

Examples

			82004 is a term since both 82004 and 82005 are abundant, and all of their proper divisors are deficient numbers.
		

Crossrefs

Subsequence of A005101, A071395, A096399 and A283418.

Programs

  • Mathematica
    primAbQ[n_] := DivisorSigma[1, n] > 2 n && AllTrue[Most @ Rest @ Divisors[n], DivisorSigma[1, #] < 2*# &]; q1 = False; seq = {}; Do[q2 = primAbQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 6*10^6}]; seq

A295369 Number of squarefree primitive abundant numbers (A071395) with n prime factors.

Original entry on oeis.org

0, 0, 1, 18, 610, 216054, 12566567699
Offset: 1

Views

Author

Gianluca Amato, Feb 12 2018

Keywords

Comments

Here primitive abundant number means an abundant number all of whose proper divisors are deficient numbers (A071395). The alternative definition (an abundant number having no abundant proper divisor, see A091191) would yield an infinite count for a(3): since 2*3 = 6 is perfect, all numbers of the kind 2*3*p with p > 3 would be primitive abundant.
See A287590 for the number of squarefree ODD primitive abundant numbers with n prime factors.
The actual numbers are listed in A298973. - M. F. Hasler, Feb 16 2018

Examples

			For n=3, the only squarefree primitive abundant number (SFPAN) is 2*5*7 = 70, which is also a primitive weird number, see A002975.
For n=4, the 18 SFPAN range from 2*5*11*13 = 1430 to 2*5*11*53 = 5830.
For n=5, the 610 SFPAN range from 3*5*7*11*13 = 15015 to 2*5*11*59*647 = 4199030.
		

Crossrefs

Cf. A071395 (primitive abundant numbers), A287590 (counts of odd SFPAN), A298973, A249242 (using A091191).

Programs

  • PARI
    A295369(n, p=1, m=1, sigmam=1) = {
      my(centerm = sigmam/(2*m-sigmam), s=0);
      if (n==1,
        if (centerm > p, primepi(ceil(centerm)-1) - primepi(p), 0),
        p = max(floor(centerm),p); while (0A295369(n-1, p=nextprime(p+1), m*p, sigmam*(p+1)), s+=c); s
      )
    }
    
  • SageMath
    def A295369(n, p=1, m=1, sigmam=1):
      centerm = sigmam/(2*m-sigmam)
      if n==1:
        return prime_pi(ceil(centerm)-1) - prime_pi(p) if centerm > p else 0
      else:
        p = max(floor(centerm), p)
        s = 0
        while True:
           p = next_prime(p)
           c = A295369(n-1, p, m*p, sigmam*(p+1))
           if c <= 0: return s
           s+=c

A306796 Primitive abundant numbers (A071395) that are squares.

Original entry on oeis.org

342225, 280495504, 1029447225, 1148667664, 1435045924, 1596961444, 1757705625, 2177622225, 14787776025, 18114198921, 32871503025, 45018230625, 150897287025, 245485566225, 272993710144, 296006724225, 705373218225, 1126920249225, 1329226832241, 1358425215225
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2019

Keywords

Comments

The square roots of the terms are 585, 16748, 32085, 33892, 37882, 39962, 41925, 46665, 121605, 134589, ...

Crossrefs

Intersection of A000290 and A071395.
Cf. A306797, A379949 (most likely gives the odd terms).

Programs

  • Mathematica
    abQ[f_] := Times@@((f[[;;,1]]^(f[[;;,2]]+1)-1)/(f[[;;,1]]-1)) > 2*Times@@Power@@@f;
    nondefQ[f_,g_] := Times@@((f^(g+1)-1)/(f-1)) >= 2*Times@@(f^g);
    sub[f_,k_] := Module[{g=f[[;;,2]]}, n=Length[g]; kk=k-1; Do[g[[i]] = Mod[kk, f[[i,2]]+1]; kk=(kk-g[[i]])/(f[[i,2]]+1), {i,1,n}]; g];
    paQ[f_] := abQ[f] && Module[{nd = Times@@(f[[;;,2]]+1), ans=True}, Do[g=sub[f,k]; If[nondefQ[f[[;;,1]], g], ans=False; Break[]], {k,1,nd-1}]; ans];
    papowerQ[n_, e_] := Module[{f=FactorInteger[n]}, f[[;;,2]]*=e; paQ[f]];
    s={}; e=2; Do[If[papowerQ[m, e], AppendTo[s, m^e]], {m, 2, 50000}]; s
  • PARI
    is1(k) = {my(f = factor(k)); for(i = 1, #f~, f[i, 2] *= 2); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, f[i, 2] -= 1; if(sigma(f, -1) >= 2, return(0)); f[i, 2] += 1); 1;}
    list(lim) = for(k = 1, lim, if(is1(k), print1(k^2, ", "))); \\ Amiram Eldar, Mar 12 2025

A306797 Primitive abundant numbers (A071395) that are cubes.

Original entry on oeis.org

6886512413632368153, 8815747507513708671, 334845050584968548307656, 1254177078562232856388071, 27869863573964698956703125, 108182814324640834480192546875, 384852900473651366592567235048, 520616176957487045802123463832, 567962434462802770687173681448, 1389387861291307410644039382069
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2019

Keywords

Comments

The cube roots of the terms are 1902537, 2065791, 69440786, 107841591, 303187725, ...

Crossrefs

Intersection of A000578 and A071395.
Cf. A306796.

Programs

  • Mathematica
    abQ[f_] := Times@@((f[[;;,1]]^(f[[;;,2]]+1)-1)/(f[[;;,1]]-1)) > 2*Times@@Power@@@f;
    nondefQ[f_,g_] := Times@@((f^(g+1)-1)/(f-1)) >= 2*Times@@(f^g);
    sub[f_,k_] := Module[{g=f[[;;,2]]}, n=Length[g]; kk=k-1; Do[g[[i]] = Mod[kk, f[[i,2]]+1]; kk=(kk-g[[i]])/(f[[i,2]]+1), {i,1,n}]; g];
    paQ[f_] := abQ[f] && Module[{nd = Times@@(f[[;;,2]]+1), ans=True}, Do[g=sub[f,k]; If[nondefQ[f[[;;,1]], g], ans=False; Break[]], {k,1,nd-1}]; ans];
    papowerQ[n_, e_] := Module[{f=FactorInteger[n]}, f[[;;,2]]*=e; paQ[f]];
    s={}; e=3; Do[If[papowerQ[m, e], AppendTo[s, m^e]], {m, 2, 7*10^7}]; s
  • PARI
    is1(k) = {my(f = factor(k)); for(i = 1, #f~, f[i, 2] *= 3); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, f[i, 2] -= 1; if(sigma(f, -1) >= 2, return(0)); f[i, 2] += 1); 1;}
    list(lim) = for(k = 1, lim, if(is1(k), print1(k^3, ", "))); \\ Amiram Eldar, Mar 12 2025

Extensions

a(6)-a(10) from Amiram Eldar, Mar 12 2025

A334419 Primitive abundant numbers (A071395) with a record gap to the next primitive abundant number.

Original entry on oeis.org

20, 104, 945, 2210, 2584, 8415, 10184, 12104, 15368, 86272, 133484, 135470, 140668, 643336, 700256, 1149952, 2410816, 2434888, 5924032, 6100605, 7623872, 8531144, 8760424, 9405045, 10471755, 14803216, 16283085, 21506432, 26919250, 34441946, 35622016, 36064964
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2020

Keywords

Comments

The record gap values are 50, 168, 239, 260, 406, 510, ... (see the link for more values).

Examples

			The first 5 terms of A071395 are 20, 70, 88, 104 and 272. The differences between these terms are 50, 18, 16, and 168. The record gaps are 50 and 168, which occur after the terms 20 and 104.
		

Crossrefs

Similar sequences: A306747, A306748, A306953.

Programs

  • Mathematica
    primAbQ[n_] := DivisorSigma[1, n] > 2 n && AllTrue[Most @ Rest @ Divisors[n], DivisorSigma[1, #] < 2*# &]; seq = {}; m = 20; dm = 0; Do[If[primAbQ[n], d = n - m; If[d > dm, dm = d; AppendTo[seq, m]]; m = n], {n, 21, 10^6}]; seq

A363175 Primitive abundant numbers (A071395) that are powerful numbers (A001694).

Original entry on oeis.org

342225, 570375, 3172468, 4636684, 63126063, 99198099, 117234117, 171991125, 280495504, 319600125, 327921075, 404529741, 581549787, 635689593, 762155163, 1029447225, 1148667664, 1356949503, 1435045924, 1501500375, 1558495125, 1596961444, 1757705625, 1778362047
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

The least cubefull (A036966) term is a(154) = A363177(1) = 26376098024367 = 3^6 * 7^4 * 13^3 * 19^3.

Crossrefs

Intersection of A001694 and A071395.
Subsequence of A363169 and A363176.
Subsequences: A306796, A306797, A363177.
Cf. A036966.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p^(e + 1) - p^e); f2[p_, e_] := (p^(e + 1) - p)/(p^(e + 1) - 1);
    primAbQ[n_] := (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f < 2;
    seq[max_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]]}, Select[Rest[pow], primAbQ]]; seq[10^10]
  • PARI
    isPrimAb(n) = {my(f = factor(n), r, p, e); r = sigma(f, -1); r > 2 && vecmax(vector(#f~, i, p = f[i, 1]; e = f[i, 2]; (p^(e + 1) - p)/(p^(e + 1) - 1))) * r < 2; }
    lista(lim) = {my(pow = List(), t); for(j=1, sqrtnint(lim\1, 3), for(i=1, sqrtint(lim\j^3), listput(pow, i^2*j^3))); select(x->isPrimAb(x), Set(pow)); }

A306987 Primitive abundant numbers (A071395) that are pseudoperfect (A005835).

Original entry on oeis.org

20, 88, 104, 272, 304, 368, 464, 550, 572, 650, 748, 945, 1184, 1312, 1376, 1430, 1504, 1575, 1696, 1870, 1888, 1952, 2002, 2090, 2205, 2210, 2470, 2530, 2584, 2990, 3128, 3190, 3230, 3410, 3465, 3496, 3770, 3944, 4070, 4095, 4216, 4288, 4408, 4510, 4544, 4672
Offset: 1

Views

Author

Amiram Eldar, Mar 18 2019

Keywords

Comments

By definition these numbers are also primitive pseudoperfect (A006036).
Benkoski and Erdős proved that this sequence is infinite, since it includes all the numbers of the form 2^k * p with p a prime such that 2^k < p < 2^(k+1).

Crossrefs

Programs

  • Mathematica
    paQ[n_]:=DivisorSigma[1, n] > 2n && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ n] == 1; psQ[n_]:=Module[{d= Most[Divisors[n] ]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] > 0]; Select[Range[5000], paQ[#]&&psQ[#]&] (* after Michael De Vlieger at A071395 and T. D. Noe at A005835 *)

A333967 Subsequence of A071395. The extra constraint is m is not a term if m*q/p is abundant where prime p|m and q is the least prime larger than p.

Original entry on oeis.org

70, 2002, 3230, 4030, 5830, 8415, 8925, 20482, 32445, 45885, 51765, 83265, 107198, 131054, 133042, 178486, 206770, 253270, 253946, 258970, 270470, 310930, 330310, 334305, 362710, 442365, 474045, 497835, 513890, 544310, 567765, 589095, 592670, 602175, 617265, 631670, 654675
Offset: 1

Views

Author

David A. Corneth, Jul 05 2020

Keywords

Examples

			70 is in the sequence as it's abundant. Its prime factorization is 2 * 5 * 7. Each of 3 * 5 * 7, 2 * 7 * 7 and 2 * 5 * 11 are deficient and no divisor of 70 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    primabQ[n_] := DivisorSigma[1, n] > 2n && AllTrue[Most @ Divisors[n], DivisorSigma[1, #] < 2# &]; seqQ[n_] := Module[{f = FactorInteger[n]}, p = f[[;; , 1]]; e = f[[;; , 2]]; q = NextPrime[p]; AllTrue[n*(q/p), DivisorSigma[1, #] <= 2# &]]; Select[Range[10^5], primabQ[#] && seqQ[#] &] (* Amiram Eldar, Jul 05 2020 *)

A337538 a(n) is the least k such that A003961(k*A071395(n)) is abundant.

Original entry on oeis.org

6, 6, 15, 15, 15, 15, 15, 15, 3, 6, 6, 6, 9, 2, 15, 15, 15, 3, 15, 2, 15, 3, 15, 15, 6, 3, 2, 3, 3, 3, 9, 3, 9, 3, 3, 3, 2, 15, 6, 15, 6, 3, 2, 15, 15, 15, 3, 15, 15, 15, 3, 15, 15, 3, 15, 15, 2, 15, 15, 15, 15, 2, 3, 15, 2, 15, 15, 15, 2, 15, 15, 15, 15, 2, 15, 15, 15, 15, 15, 15, 2, 2, 15, 15, 15, 15, 2
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Sep 07 2020

Keywords

Comments

A071395(n) is the n-th primitive abundant number. A003961(k) replaces each prime factor of k with the next larger prime.
See also the table in the example section of A337469.

Crossrefs

Programs

  • Mathematica
    Map[Block[{k = 1}, While[DivisorSigma[1, #] <= 2 # &[Times @@ Map[#1^#2 & @@ # &, FactorInteger[k #] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}]], k++]; k] &, Select[Range[10^4], DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] < 2 # &, Most@ Divisors@ #] == 1 &]] (* Michael De Vlieger, Oct 05 2020 *)
  • PARI
    isA071395(n) = if(sigma(n) <= 2*n, 0, fordiv(n, d, if((d != n)&&(sigma(d) >= 2*d), return(0))); (1)); \\ After code in A071395
    A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    isA337386(n) = { my(x=A003961(n)); (sigma(x)>=2*x); };
    for(n=1,2^13,if(isA071395(n), i=0; for(k=1,oo,if(isA337386(k*n),i++; print1(k,", "); break))));

Formula

a(n) = A337469(n) / A071395(n).

A363177 Primitive abundant numbers (A071395) that are cubefull numbers (A036966).

Original entry on oeis.org

26376098024367, 33912126031329, 1910383099764867, 2792098376579421, 5229860083034911875, 6886512413632368153, 8815747507513708671, 28966027524687899919, 42200802302982406288, 89594138836162749375, 224439112362213402759, 288564573037131517833, 512767531125033485625
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

It seems that this sequence is also the intersection of A036966 and A091191 (checked up to 10^27).
Are there terms that are 4-full numbers (A036967)? There are none below 10^27.

Crossrefs

Intersection of A036966 and A071395.
Subsequence of A363169 and A363175.
A306797 is a subsequence.
Showing 1-10 of 49 results. Next