cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A379949 Primitive abundant numbers (A091191) that are odd squares.

Original entry on oeis.org

342225, 1029447225, 1757705625, 2177622225, 14787776025, 18114198921, 32871503025, 45018230625, 150897287025, 245485566225, 296006724225, 705373218225, 1126920249225, 1329226832241, 1358425215225, 1545732725625, 1555265892609, 1783322538921, 2811755495241, 4627123655625, 5248080775161, 6140855705625, 7683069267225
Offset: 1

Views

Author

Antti Karttunen, Jan 07 2025

Keywords

Comments

Question: Does A379504(.) obtain generally smaller values for the terms of this subsequence of A156942 than for its non-primitive terms? (See A379951, with A379951(5) = 5969, where A156942(5) = 342225, the first term of this sequence). Is A103977(.) = 1 for all terms, i.e., is this a subsequence of A379503?

Crossrefs

Cf. A103977, A379504, A379950 (square roots).
Intersection of A016754 and A091191.
Intersection of A006038 and A156942.
Subsequences of the following sequences: A306796 (odd terms, but only if there are no odd perfect numbers), A363176, A379503 (conjectured).

Programs

  • PARI
    is_A379949(n) = if(!(n%2) || !issquare(n) || sigma(n)<=2*n, 0, fordiv(n, d, if(d>1 && sigma(n/d, -1)>2, return(0))); (1));
    
  • PARI
    is1(k) = {my(f = factor(k)); for(i = 1, #f~, f[i, 2] *= 2); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, f[i, 2] -= 1; if(sigma(f, -1) > 2, return(0)); f[i, 2] += 1); 1;}
    list(lim) = forstep(k = 1, lim, 2, if(is1(k), print1(k^2, ", "))); \\ Amiram Eldar, Mar 12 2025

Formula

a(n) = A379950(n)^2.

A306797 Primitive abundant numbers (A071395) that are cubes.

Original entry on oeis.org

6886512413632368153, 8815747507513708671, 334845050584968548307656, 1254177078562232856388071, 27869863573964698956703125, 108182814324640834480192546875, 384852900473651366592567235048, 520616176957487045802123463832, 567962434462802770687173681448, 1389387861291307410644039382069
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2019

Keywords

Comments

The cube roots of the terms are 1902537, 2065791, 69440786, 107841591, 303187725, ...

Crossrefs

Intersection of A000578 and A071395.
Cf. A306796.

Programs

  • Mathematica
    abQ[f_] := Times@@((f[[;;,1]]^(f[[;;,2]]+1)-1)/(f[[;;,1]]-1)) > 2*Times@@Power@@@f;
    nondefQ[f_,g_] := Times@@((f^(g+1)-1)/(f-1)) >= 2*Times@@(f^g);
    sub[f_,k_] := Module[{g=f[[;;,2]]}, n=Length[g]; kk=k-1; Do[g[[i]] = Mod[kk, f[[i,2]]+1]; kk=(kk-g[[i]])/(f[[i,2]]+1), {i,1,n}]; g];
    paQ[f_] := abQ[f] && Module[{nd = Times@@(f[[;;,2]]+1), ans=True}, Do[g=sub[f,k]; If[nondefQ[f[[;;,1]], g], ans=False; Break[]], {k,1,nd-1}]; ans];
    papowerQ[n_, e_] := Module[{f=FactorInteger[n]}, f[[;;,2]]*=e; paQ[f]];
    s={}; e=3; Do[If[papowerQ[m, e], AppendTo[s, m^e]], {m, 2, 7*10^7}]; s
  • PARI
    is1(k) = {my(f = factor(k)); for(i = 1, #f~, f[i, 2] *= 3); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, f[i, 2] -= 1; if(sigma(f, -1) >= 2, return(0)); f[i, 2] += 1); 1;}
    list(lim) = for(k = 1, lim, if(is1(k), print1(k^3, ", "))); \\ Amiram Eldar, Mar 12 2025

Extensions

a(6)-a(10) from Amiram Eldar, Mar 12 2025

A363175 Primitive abundant numbers (A071395) that are powerful numbers (A001694).

Original entry on oeis.org

342225, 570375, 3172468, 4636684, 63126063, 99198099, 117234117, 171991125, 280495504, 319600125, 327921075, 404529741, 581549787, 635689593, 762155163, 1029447225, 1148667664, 1356949503, 1435045924, 1501500375, 1558495125, 1596961444, 1757705625, 1778362047
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

The least cubefull (A036966) term is a(154) = A363177(1) = 26376098024367 = 3^6 * 7^4 * 13^3 * 19^3.

Crossrefs

Intersection of A001694 and A071395.
Subsequence of A363169 and A363176.
Subsequences: A306796, A306797, A363177.
Cf. A036966.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p^(e + 1) - p^e); f2[p_, e_] := (p^(e + 1) - p)/(p^(e + 1) - 1);
    primAbQ[n_] := (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f < 2;
    seq[max_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]]}, Select[Rest[pow], primAbQ]]; seq[10^10]
  • PARI
    isPrimAb(n) = {my(f = factor(n), r, p, e); r = sigma(f, -1); r > 2 && vecmax(vector(#f~, i, p = f[i, 1]; e = f[i, 2]; (p^(e + 1) - p)/(p^(e + 1) - 1))) * r < 2; }
    lista(lim) = {my(pow = List(), t); for(j=1, sqrtnint(lim\1, 3), for(i=1, sqrtint(lim\j^3), listput(pow, i^2*j^3))); select(x->isPrimAb(x), Set(pow)); }
Showing 1-3 of 3 results.