cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306796 Primitive abundant numbers (A071395) that are squares.

Original entry on oeis.org

342225, 280495504, 1029447225, 1148667664, 1435045924, 1596961444, 1757705625, 2177622225, 14787776025, 18114198921, 32871503025, 45018230625, 150897287025, 245485566225, 272993710144, 296006724225, 705373218225, 1126920249225, 1329226832241, 1358425215225
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2019

Keywords

Comments

The square roots of the terms are 585, 16748, 32085, 33892, 37882, 39962, 41925, 46665, 121605, 134589, ...

Crossrefs

Intersection of A000290 and A071395.
Cf. A306797, A379949 (most likely gives the odd terms).

Programs

  • Mathematica
    abQ[f_] := Times@@((f[[;;,1]]^(f[[;;,2]]+1)-1)/(f[[;;,1]]-1)) > 2*Times@@Power@@@f;
    nondefQ[f_,g_] := Times@@((f^(g+1)-1)/(f-1)) >= 2*Times@@(f^g);
    sub[f_,k_] := Module[{g=f[[;;,2]]}, n=Length[g]; kk=k-1; Do[g[[i]] = Mod[kk, f[[i,2]]+1]; kk=(kk-g[[i]])/(f[[i,2]]+1), {i,1,n}]; g];
    paQ[f_] := abQ[f] && Module[{nd = Times@@(f[[;;,2]]+1), ans=True}, Do[g=sub[f,k]; If[nondefQ[f[[;;,1]], g], ans=False; Break[]], {k,1,nd-1}]; ans];
    papowerQ[n_, e_] := Module[{f=FactorInteger[n]}, f[[;;,2]]*=e; paQ[f]];
    s={}; e=2; Do[If[papowerQ[m, e], AppendTo[s, m^e]], {m, 2, 50000}]; s
  • PARI
    is1(k) = {my(f = factor(k)); for(i = 1, #f~, f[i, 2] *= 2); if(sigma(f, -1) <= 2, return(0)); for(i = 1, #f~, f[i, 2] -= 1; if(sigma(f, -1) >= 2, return(0)); f[i, 2] += 1); 1;}
    list(lim) = for(k = 1, lim, if(is1(k), print1(k^2, ", "))); \\ Amiram Eldar, Mar 12 2025

A363175 Primitive abundant numbers (A071395) that are powerful numbers (A001694).

Original entry on oeis.org

342225, 570375, 3172468, 4636684, 63126063, 99198099, 117234117, 171991125, 280495504, 319600125, 327921075, 404529741, 581549787, 635689593, 762155163, 1029447225, 1148667664, 1356949503, 1435045924, 1501500375, 1558495125, 1596961444, 1757705625, 1778362047
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

The least cubefull (A036966) term is a(154) = A363177(1) = 26376098024367 = 3^6 * 7^4 * 13^3 * 19^3.

Crossrefs

Intersection of A001694 and A071395.
Subsequence of A363169 and A363176.
Subsequences: A306796, A306797, A363177.
Cf. A036966.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p^(e + 1) - p^e); f2[p_, e_] := (p^(e + 1) - p)/(p^(e + 1) - 1);
    primAbQ[n_] := (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f < 2;
    seq[max_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]]}, Select[Rest[pow], primAbQ]]; seq[10^10]
  • PARI
    isPrimAb(n) = {my(f = factor(n), r, p, e); r = sigma(f, -1); r > 2 && vecmax(vector(#f~, i, p = f[i, 1]; e = f[i, 2]; (p^(e + 1) - p)/(p^(e + 1) - 1))) * r < 2; }
    lista(lim) = {my(pow = List(), t); for(j=1, sqrtnint(lim\1, 3), for(i=1, sqrtint(lim\j^3), listput(pow, i^2*j^3))); select(x->isPrimAb(x), Set(pow)); }

A363177 Primitive abundant numbers (A071395) that are cubefull numbers (A036966).

Original entry on oeis.org

26376098024367, 33912126031329, 1910383099764867, 2792098376579421, 5229860083034911875, 6886512413632368153, 8815747507513708671, 28966027524687899919, 42200802302982406288, 89594138836162749375, 224439112362213402759, 288564573037131517833, 512767531125033485625
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

It seems that this sequence is also the intersection of A036966 and A091191 (checked up to 10^27).
Are there terms that are 4-full numbers (A036967)? There are none below 10^27.

Crossrefs

Intersection of A036966 and A071395.
Subsequence of A363169 and A363175.
A306797 is a subsequence.
Showing 1-3 of 3 results.