Gianluca Amato has authored 2 sequences.
A298157
Number of primitive abundant numbers (A071395) with n prime factors, counted with multiplicity.
Original entry on oeis.org
0, 0, 2, 25, 906, 265602, 13232731828
Offset: 1
For n=3, the only two primitive abundant numbers (PAN) are 2*2*5 = 20 and 2*5*7 = 70. The latter is also a primitive weird number, see A002975.
For n=4, the 25 PAN range from 2^3*11 = 88 to 2*5*11*53 = 5830.
Cf.
A071395 (primitive abundant numbers),
A091191 (alternative definition),
A287728 (counts of odd PAN),
A295369 (counts of squarefree PAN).
A295369
Number of squarefree primitive abundant numbers (A071395) with n prime factors.
Original entry on oeis.org
0, 0, 1, 18, 610, 216054, 12566567699
Offset: 1
For n=3, the only squarefree primitive abundant number (SFPAN) is 2*5*7 = 70, which is also a primitive weird number, see A002975.
For n=4, the 18 SFPAN range from 2*5*11*13 = 1430 to 2*5*11*53 = 5830.
For n=5, the 610 SFPAN range from 3*5*7*11*13 = 15015 to 2*5*11*59*647 = 4199030.
-
A295369(n, p=1, m=1, sigmam=1) = {
my(centerm = sigmam/(2*m-sigmam), s=0);
if (n==1,
if (centerm > p, primepi(ceil(centerm)-1) - primepi(p), 0),
p = max(floor(centerm),p); while (0A295369(n-1, p=nextprime(p+1), m*p, sigmam*(p+1)), s+=c); s
)
}
-
def A295369(n, p=1, m=1, sigmam=1):
centerm = sigmam/(2*m-sigmam)
if n==1:
return prime_pi(ceil(centerm)-1) - prime_pi(p) if centerm > p else 0
else:
p = max(floor(centerm), p)
s = 0
while True:
p = next_prime(p)
c = A295369(n-1, p, m*p, sigmam*(p+1))
if c <= 0: return s
s+=c
Comments