cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A249242 Squarefree primitive abundant numbers (using the second definition: having no abundant proper divisors, cf. A091191).

Original entry on oeis.org

30, 42, 66, 70, 78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362, 1374, 1398, 1430, 1434, 1446, 1506
Offset: 1

Views

Author

Derek Orr, Oct 23 2014

Keywords

Comments

Primitive numbers in A087248.
Squarefree numbers in A091191.
According to the definition of A091191, all terms of the form 6*p, p > 3, are in this sequence (and similarly for other perfect numbers). Primitive abundant can also be defined as "having only deficient proper divisors", cf. A071395. The corresponding squarefree terms are listed in A298973, and those with n prime factors are counted in A295369. (The preceding remark shows that this count would be infinite for n = 3, using the definition of A091191.) - M. F. Hasler, Feb 16 2018

Crossrefs

Intersection of A087248 and A091191.

Programs

  • Mathematica
    Select[Range@1506, SquareFreeQ[#] && DivisorSigma[1, #] > 2 #  && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &] (* Amiram Eldar, Jun 26 2019 after Michael De Vlieger at A091191 *)
  • PARI
    v=[];for(n=1,10^5,d=0;for(j=2,ceil(sqrt(n)),if(n%(j^2),d++));if(d==ceil(sqrt(n))-1,if(sigma(n)>2*n,c=0;for(i=1,#v,if(n%v[i],c++));if(c==#v,print1(n,", ");v=concat(v,n)))))

Extensions

Definition edited by M. F. Hasler, Feb 16 2018

A298973 Squarefree primitive abundant numbers (first definition: having only deficient proper divisors).

Original entry on oeis.org

70, 1430, 1870, 2002, 2090, 2210, 2470, 2530, 2990, 3190, 3230, 3410, 3770, 4030, 4070, 4510, 4730, 5170, 5830, 15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 49742, 50505, 51765, 54285, 55965, 58695, 58786, 60214, 61215, 64155, 67298
Offset: 1

Views

Author

M. F. Hasler, Feb 16 2018

Keywords

Comments

Squarefree numbers (A005117) in A071395. The number of terms with n prime factors are counted in A295369. The subsequence of odd terms is A249263.
Two variants of the present sequence are possible: the terms listed by size, or as a table whose n-th row gives all those with n prime factors (so that A295369 would be the row lengths). They would differ only from a(322) = 692835 on, which is the first term with 6 prime factors, while a(755) = 4199030 is the last term with 5 prime factors.
A subsequence of the variant A249242, squarefree primitive abundant numbers using the 2nd definition, A091191, i.e., having no abundant proper divisors.
These numbers are also primitive unitary abundant numbers: unitary abundant numbers (A034683) that are also primitive abundant numbers (A071395). A unitary abundant number k is primitive if and only if usigma(k) - 2*k < 2*k/p^e, where p^e is the largest prime power dividing k and usigma is the sum of unitary divisors function (A034448). For numbers k in this sequence limsup_{k->oo} usigma(k)/k = 2. (Prasad and Reddy, 1990). - Amiram Eldar, Jul 18 2020

Examples

			The only squarefree primitive abundant number (SFPAN) with only 3 prime factors is a(1) = 2*5*7 = 70. Indeed, this number is abundant (sigma(70) - 70 = 1 + 2 + 5 + 7 + 10 + 14 + 35 = 74) but all of 2*5, 2*7 and 5*7 are deficient. This is also the smallest (thus primitive) weird number, see A002975.
The A295369(4) = 18 SFPAN with 4 prime factors range from a(2) = 2*5*11*13 = 1430 to a(19) = 2*5*11*53 = 5830.
The A295369(5) = 610 SFPAN with 5 prime factors range from a(20) = 3*5*7*11*13 = 15015 to a(755) = 2*5*11*59*647 = 4199030, but the first term with 6 prime factors occurs already at a(322) =  3*5*11*13*17*19 = 692835.
		

References

  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, p. 115.

Crossrefs

Cf. A005117 (squarefree numbers), A071395 (primitive abundant numbers, first definition), A091191 (idem, second definition), A249242 (squarefree numbers in A091191).

Programs

  • Mathematica
    spaQ[n_] := SquareFreeQ[n] && DivisorSigma[1, n] > 2*n && AllTrue[Most @ Divisors[n], DivisorSigma[1, #] < 2*# &]; Select[Range[70000], spaQ] (* Amiram Eldar, Jul 18 2020 *)
  • PARI
    is_A298973(n)=issquarefree(n)&&is_A071395(n)

A298157 Number of primitive abundant numbers (A071395) with n prime factors, counted with multiplicity.

Original entry on oeis.org

0, 0, 2, 25, 906, 265602, 13232731828
Offset: 1

Views

Author

Gianluca Amato, Feb 15 2018

Keywords

Comments

This uses the first definition of primitive abundant numbers, A071395: having only deficient proper divisors. The second definition (A091191: having no abundant proper divisors) would yield infinite a(3), since all numbers 6*p, p > 3, are in that sequence.
See A287728 for the number of ODD primitive abundant numbers with n prime factors, counted with multiplicity and A295369 for the number of squarefree primitive abundant numbers with n distinct prime factors.
It appears that a(n) is just slightly larger than A295369(n).

Examples

			For n=3, the only two primitive abundant numbers (PAN) are 2*2*5 = 20 and 2*5*7 = 70. The latter is also a primitive weird number, see A002975.
For n=4, the 25 PAN range from 2^3*11 = 88 to 2*5*11*53 = 5830.
		

Crossrefs

Cf. A071395 (primitive abundant numbers), A091191 (alternative definition), A287728 (counts of odd PAN), A295369 (counts of squarefree PAN).

Programs

  • SageMath
    # See GitHub link.
Showing 1-3 of 3 results.