cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A334419 Primitive abundant numbers (A071395) with a record gap to the next primitive abundant number.

Original entry on oeis.org

20, 104, 945, 2210, 2584, 8415, 10184, 12104, 15368, 86272, 133484, 135470, 140668, 643336, 700256, 1149952, 2410816, 2434888, 5924032, 6100605, 7623872, 8531144, 8760424, 9405045, 10471755, 14803216, 16283085, 21506432, 26919250, 34441946, 35622016, 36064964
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2020

Keywords

Comments

The record gap values are 50, 168, 239, 260, 406, 510, ... (see the link for more values).

Examples

			The first 5 terms of A071395 are 20, 70, 88, 104 and 272. The differences between these terms are 50, 18, 16, and 168. The record gaps are 50 and 168, which occur after the terms 20 and 104.
		

Crossrefs

Similar sequences: A306747, A306748, A306953.

Programs

  • Mathematica
    primAbQ[n_] := DivisorSigma[1, n] > 2 n && AllTrue[Most @ Rest @ Divisors[n], DivisorSigma[1, #] < 2*# &]; seq = {}; m = 20; dm = 0; Do[If[primAbQ[n], d = n - m; If[d > dm, dm = d; AppendTo[seq, m]]; m = n], {n, 21, 10^6}]; seq

A353544 Numbers k such that k and k+1 are both in A353543.

Original entry on oeis.org

285, 43214, 190773, 2676321, 3027002, 3209073, 3894638, 5344118, 8963306, 15059985, 16558005, 18619634, 35731857, 36233846, 36413385, 37601342, 43559714, 52596434, 70700145, 75135962, 81136418, 83557617, 90577994, 91667666, 99846201, 111263074, 124896045, 128709801
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2022

Keywords

Examples

			285 is a term since both 285 and 286 are in A353543.
		

Crossrefs

Subsequence of A353543.
Subsequences: A283418, A330872.

Programs

  • Mathematica
    q[n_] := DivisorSigma[-1, n] > Pi^2/6 && AllTrue[Most @ Divisors[n], DivisorSigma[-1, #] < Pi^2/6 &]; Position[Partition[Array[q, 4*10^6], 2, 1], {True, True}] // Flatten

A339937 Numbers k such that k and k+1 are both coreful abundant numbers (A308053).

Original entry on oeis.org

2282175, 33350624, 46734975, 86424975, 87152624, 105674624, 126114975, 169707824, 179762624, 214491375, 221370975, 235857824, 266022224, 270586575, 278524575, 297774224, 360021375, 372683024, 380858624, 395715375, 425840624, 470624175, 489873824, 503963775
Offset: 1

Views

Author

Amiram Eldar, Dec 23 2020

Keywords

Examples

			2282175 is a term since 2282175 and 2282176 are both coreful abundant numbers.
		

Crossrefs

Subsequence of A308053.

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 1; s[n_] := Times @@ (f @@@ FactorInteger[n]); abQ[n_] := s[n] > 2*n; q1 = False; seq = {}; Do[q2 = abQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 10^8}]; seq

A361934 Numbers k such that k and k+1 are both primitive Zumkeller numbers (A180332).

Original entry on oeis.org

82004, 84524, 158235, 516704, 2921535, 5801984, 10846016, 12374144, 12603824, 18738224, 24252074, 24887655, 25691984, 32409530, 33696975, 35356544, 36149295, 41078114, 42541190, 43485584
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Examples

			82004 is a term since 82004 and 82005 are both primitive Zumkeller numbers.
		

Crossrefs

Subsequence of A180332 and A328327.
Similar sequences: A283418, A330872, A334882.

Programs

  • Mathematica
    q[n_, d_, s1_, m1_] := Module[{s = s1, m = m1}, If[m == 0, False, While[d[[m]] > n, s -= d[[m]]; m--]; d[[m]] == n || If[s > n, q[n - d[[m]], d, s - d[[m]], m - 1] || q[n, d, s - d[[m]], m - 1], n == s]]];
    (* after M. F. Hasler's pari code at A006037 *)
    zumQ[n_] := Module[{d = Most[Divisors[n]], m, s}, m = Length[d]; s = Total[d]; If[OddQ[s + n], False, q[(s + n)/2, d, s, m]]];
    primZumQ[n_] := zumQ[n] && AllTrue[Most[Divisors[n]], ! zumQ[#] &];
    seq[kmax_] := Module[{s = {}, zq1 = False, zq2}, Do[zq2 = primZumQ[k]; If[zq1 && zq2, AppendTo[s, k - 1]]; zq1 = zq2, {k, 2, kmax}]; s]; seq[3*10^6]
  • PARI
    is1(n,d,s,m) = {m||return; while(d[m]>n, s-=d[m]; m--||return); d[m]==n || if(nM. F. Hasler at A006037
    isZum(n) = {my(d = divisors(n)[^-1], s = vecsum(d), m = #d); if((s+n)%2, return(0), is1((s+n)/2, d, s, m)); }
    isPrimZum(n) = {if(!isZum(n), return(0)); fordiv(n, d, if(d < n && isZum(d), return(0))); 1;}
    lista(kmax) = {my(is1 = 0, is2); for(k = 2, kmax, is2 = isPrimZum(k); if(is1 && is2, print1(k-1, ", ")); is1 = is2);}

A361935 Numbers k such that k and k+1 are both primitive unitary abundant numbers (definition 2, A302574).

Original entry on oeis.org

2457405145194, 2601523139214, 3320774552094, 3490250769005, 3733421997305, 3934651766045, 3954730124345, 4514767592334, 4553585751714, 4563327473705, 5226433847634
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Comments

There are no more terms below 10^13.
There are no numbers k such that k and k+1 are both unitary abundant numbers with definition 1 (A302573) below 10^13.

Crossrefs

Subsequence of A034683, A302574 and A331412.
Cf. A302573.
Similar sequences: A283418, A330872.

Programs

  • Mathematica
    f1[p_, e_] := 1 + 1/p^e; f2[p_, e_] := p^e/(p^e + 1);
    puabQ[n_] := (r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f <= 2;
    Select[Import["https://oeis.org/A331412/b331412.txt", "Table"][[;; , 2]], puabQ[#] && puabQ[# + 1] &]

A372300 Numbers k such that k and k+1 are both primitive infinitary abundant numbers (definition 1, A372298).

Original entry on oeis.org

812889, 3181815, 20787584, 181480695, 183872535, 307510664, 337206344, 350158808, 523403264, 744074624, 868421504, 1063361144, 1955365125, 2076191864, 2578966215, 3672231255, 4185590408, 5032685384, 7158001304, 8348108535, 10784978295, 16264812135, 20917209495, 24514454055
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2024

Keywords

Comments

The corresponding sequence with definition 2 (A372299) coincides with this sequence for the first 24 terms.

Crossrefs

Subsequence of A129656, A327635 and A372298.
Cf. A372299.
Similar sequences: A283418, A330872, A361935.

Programs

  • PARI
    isidiv(d, f) = {my(bne,bde); if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
    isab(n) = isigma(n) > 2*n;
    isprim(n) = select(x -> x= 2*x, idivs(n)) == [];
    lista(kmax) = {my(is1 = 0, is2); for(k = 2, kmax, is2 = isab(k); if(is1 && is2, if(isprim(k-1) && isprim(k), print1(k-1, ", "))); is1 = is2);}
Showing 1-6 of 6 results.