cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A372298 Primitive infinitary abundant numbers (definition 1): infinitary abundant numbers (A129656) whose all proper infinitary divisors are infinitary deficient numbers.

Original entry on oeis.org

40, 56, 70, 72, 88, 104, 756, 924, 945, 1092, 1188, 1344, 1386, 1428, 1430, 1596, 1638, 1760, 1870, 2002, 2016, 2080, 2090, 2142, 2176, 2210, 2394, 2432, 2470, 2530, 2584, 2720, 2750, 2944, 2990, 3040, 3128, 3190, 3200, 3230, 3250, 3400, 3410, 3496, 3712, 3770
Offset: 1

Views

Author

Amiram Eldar, Apr 25 2024

Keywords

Examples

			40 is a term since it is an infinitary abundant number and all its proper infinitary divisors, {1, 2, 4, 5, 8, 10, 20}, are infinitary deficient numbers.
24 and 30, which are infinitary abundant numbers, are not primitive, because they are divisible by 6 which is an infinitary perfect number.
		

Crossrefs

Subsequence of A129656 and A372299.
A372300 is a subsequence.
Similar sequences: A071395, A298973, A302573, A307112, A307114, A307115.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]];
    isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; idefQ[n_] := isigma[n] < 2*n; idivs[1] = {1};
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, e_Integer} :> p^Select[Range[0, e], BitOr[e, #] == e &])];
    q[n_] := Module[{d = idivs[n]}, Total[d] > 2*n && AllTrue[Most[d], idefQ]]; Select[Range[4000], q]
  • PARI
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(f = factor(n), d = divisors(f), idiv = []); for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    isigma(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)))} ;
    is(n) = isigma(n) > 2*n && select(x -> x < n && isigma(x) >= 2*x, idivs(n)) == [];
Showing 1-1 of 1 results.