A249272 Decimal expansion of a constant associated with fundamental discriminants and Dirichlet characters.
4, 9, 8, 0, 9, 4, 7, 3, 3, 9, 6, 1, 4, 9, 3, 4, 1, 5, 0, 7, 9, 1, 3, 2, 5, 3, 2, 5, 8, 8, 0, 7, 7, 5, 2, 8, 1, 2, 3, 7, 7, 3, 2, 6, 9, 6, 5, 8, 5, 2, 0, 4, 7, 9, 5, 4, 6, 2, 3, 3, 1, 2, 7, 1, 8, 6, 7, 3, 3, 2, 6, 3, 8, 1, 9, 6, 8, 0, 0, 3, 8, 1, 5, 2, 0, 9, 0, 4, 7, 7, 4, 9, 0, 0, 6, 1, 7, 6, 1, 6, 2, 1, 2
Offset: 1
Examples
4.9809473396149341507913253258807752812377326965852...
Links
- Peter J. Cho, Henry H. Kim, The average of the smallest prime in a conjugacy class, arXiv:1601.03012 [math.NT], 2016.
- Steven R. Finch, Average least nonresidues, December 4, 2013. [Cached copy, with permission of the author]
- Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 250.
- P. Pollack, The average least quadratic nonresidue modulo m and other variations on a theme of Erdős, J. Number Theory 132 (2012) 1185-1202.
Programs
-
Mathematica
digits = 103; Clear[s, P]; P[j_] := P[j] = Product[(Prime[k] + 2)/(2*(Prime[k] + 1)), {k, 1, j - 1}] // N[#, digits + 100]&; s[m_] := s[m] = Sum[Prime[j]^2/(2*(Prime[j] + 1))*P[j], {j, 1, m}]; s[10]; s[m = 20]; While[RealDigits[s[m]] != RealDigits[s[m/2]], Print[m, " ", N[s[m]]]; m = 2*m]; RealDigits[s[m], 10, digits] // First
-
PARI
suminf(k=1, prime(k)^2/(2*(prime(k)+1))*prod(i=1, k-1, (prime(i)+2)/(2*(prime(i)+1)))); \\ Michel Marcus, Apr 15 2017
Formula
sum_{q} q^2/(2(q+1)) prod_{p