A249300 Composite numbers whose concatenation of their aliquot parts, in ascending order, is a palindrome.
93, 121, 393, 497, 755, 842, 961, 993, 1042, 1255, 1293, 1642, 1681, 1893, 1897, 3721, 3755, 3997, 4043, 4061, 4442, 5041, 5755, 6797, 8197, 8842, 9993, 11042, 11255, 16593, 17309, 17642, 22255, 23221, 23597, 26242, 26493, 26797, 29793, 30043, 30242, 30383
Offset: 1
Examples
Aliquot parts of 157442 are 1, 2, 78621; their concatenation in ascending order is concat(1,2,78621) = 1278621, which is a palindrome.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A046449.
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,k,n; for n from 2 to q do if not isprime(n) then a:=sort([op(divisors(n))]); b:=0; for k from nops(a)-1 by -1 to 1 do b:=b*10^(ilog10(a[k])+1)+a[k]; od; a:=0; c:=b; for k from 1 to ilog10(b)+1 do a:=10*a+(c mod 10); c:=trunc(c/10); od; if a=b then print(n); fi; fi; od; end: P(10^9);
-
PARI
isok(n) = {d = vecsort(divisors(n)); if (#d > 2, s = ""; for (i=1, #d-1, s = concat(s, Str(d[i]));); d = digits(eval(s)); d == Vecrev(d););} \\ Michel Marcus, Oct 25 2014