cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249301 Composite numbers whose concatenation of their aliquot parts, in descending order, is a palindrome.

Original entry on oeis.org

39, 119, 121, 169, 254, 289, 361, 393, 411, 417, 755, 785, 1211, 1253, 1703, 2554, 3503, 3629, 4197, 6401, 7555, 10001, 12131, 12287, 12439, 14803, 15563, 17147, 17363, 23701, 24202, 24322, 24646, 24686, 24746, 25514, 25838, 25918, 25958, 26827, 30383, 30521
Offset: 1

Views

Author

Paolo P. Lava, Oct 24 2014

Keywords

Examples

			Aliquot parts of 24332 are 1, 2, 121661; their concatenation in descending order is concat(12166,2,1) = 1216621, which is a palindrome.
		

Crossrefs

Cf. A046449.

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n;
    for n from 2 to q do if not isprime(n) then a:=sort([op(divisors(n))]); b:=0;
    for k from 1 to nops(a)-1 do b:=b*10^(ilog10(a[k])+1)+a[k]; od; a:=0; c:=b;
    for k from 1 to ilog10(b)+1 do a:=10*a+(c mod 10); c:=trunc(c/10); od;
    if a=b then print(n); fi; fi; od; end: P(10^9);
  • PARI
    isok(n) = {d = vecsort(divisors(n),,4); if (#d > 2, s = ""; for (i=2, #d, s = concat(s, Str(d[i]));); d = digits(eval(s)); d == Vecrev(d););} \\ Michel Marcus, Oct 25 2014