cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A144555 a(n) = 14*n^2.

Original entry on oeis.org

0, 14, 56, 126, 224, 350, 504, 686, 896, 1134, 1400, 1694, 2016, 2366, 2744, 3150, 3584, 4046, 4536, 5054, 5600, 6174, 6776, 7406, 8064, 8750, 9464, 10206, 10976, 11774, 12600, 13454, 14336, 15246, 16184, 17150, 18144, 19166, 20216, 21294, 22400, 23534, 24696
Offset: 0

Views

Author

N. J. A. Sloane, Jan 01 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 14, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line and direction in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 10 2011

Crossrefs

See also A033428, A033429, A033581, A033582, A033583, A033584, ... and A249327 for the whole table.

Programs

Formula

a(n) = 14*A000290(n) = 7*A001105(n) = 2*A033582(n). - Omar E. Pol, Jan 01 2009
a(n) = a(n-1) + 14*(2*n-1), with a(0) = 0. - Vincenzo Librandi, Nov 25 2010
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/84.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/168.
Product_{n>=1} (1 + 1/a(n)) = sqrt(14)*sinh(Pi/sqrt(14))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(14)*sin(Pi/sqrt(14))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 14*x*(1 + x)/(1-x)^3.
E.g.f.: 14*x*(1 + x)*exp(x).
a(n) = n*A008596(n) = A195145(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A360633 Square array A(n, k), n, k > 0, read by antidiagonals upwards; A(n, k) = A360613(2*n-1) * A360613(2*k).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 12, 10, 8, 9, 21, 20, 16, 11, 13, 27, 35, 32, 22, 15, 14, 39, 45, 56, 44, 30, 17, 18, 42, 65, 72, 77, 60, 34, 19, 23, 54, 70, 104, 99, 105, 68, 38, 24, 25, 69, 90, 112, 143, 135, 119, 76, 48, 29, 26, 75, 115, 144, 154, 195, 153, 133, 96, 58, 31
Offset: 1

Views

Author

Rémy Sigrist, Feb 14 2023

Keywords

Comments

This sequence can be seen as a greedy multiplication table where we alternately add rows and columns so that all products are distinct.
Conjecture: all integers appear in this sequence.

Examples

			Array A(n, k) begins:
  n\k |  1   2    3    4    5    6    7    8    9   10
  ----+-----------------------------------------------
    1 |  1   3    5    8   11   15   17   19   24   29
    2 |  2   6   10   16   22   30   34   38   48   58
    3 |  4  12   20   32   44   60   68   76   96  116
    4 |  7  21   35   56   77  105  119  133  168  203
    5 |  9  27   45   72   99  135  153  171  216  261
    6 | 13  39   65  104  143  195  221  247  312  377
    7 | 14  42   70  112  154  210  238  266  336  406
    8 | 18  54   90  144  198  270  306  342  432  522
    9 | 23  69  115  184  253  345  391  437  552  667
   10 | 25  75  125  200  275  375  425  475  600  725
		

Crossrefs

Programs

  • C
    See Links section.

Formula

A(n, k) = A360627(n) * A360628(k).
A(n, 1) = A360627(n).
A(1, k) = A360628(k).

A360646 Square array A(n, k), n, k > 0, read by antidiagonals upwards; A(n, k) = A066208(n) * A066207(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 5, 12, 14, 9, 8, 15, 28, 18, 13, 10, 24, 35, 36, 26, 19, 11, 30, 56, 45, 52, 38, 21, 16, 33, 70, 72, 65, 76, 42, 27, 17, 48, 77, 90, 104, 95, 84, 54, 29, 20, 51, 112, 99, 130, 152, 105, 108, 58, 37, 22, 60, 119, 144, 143, 190, 168, 135, 116, 74, 39
Offset: 1

Views

Author

Rémy Sigrist, Feb 15 2023

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Array A(n, k) begins:
  n\k |  1   2    3    4    5    6    7    8    9   10
  ----+-----------------------------------------------
    1 |  1   3    7    9   13   19   21   27   29   37
    2 |  2   6   14   18   26   38   42   54   58   74
    3 |  4  12   28   36   52   76   84  108  116  148
    4 |  5  15   35   45   65   95  105  135  145  185
    5 |  8  24   56   72  104  152  168  216  232  296
    6 | 10  30   70   90  130  190  210  270  290  370
    7 | 11  33   77   99  143  209  231  297  319  407
    8 | 16  48  112  144  208  304  336  432  464  592
    9 | 17  51  119  153  221  323  357  459  493  629
   10 | 20  60  140  180  260  380  420  540  580  740
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, 1) = A066208(n) = A247503(A(n,k)).
A(1, k) = A066207(k) = A248101(A(n,k)).

A374600 If n = i^2 * A005117(j) for some i, j > 0 then a(n) = j^2 * A005117(i).

Original entry on oeis.org

1, 4, 9, 2, 16, 25, 36, 8, 3, 49, 64, 18, 81, 100, 121, 5, 144, 12, 169, 32, 196, 225, 256, 50, 6, 289, 27, 72, 324, 361, 400, 20, 441, 484, 529, 7, 576, 625, 676, 98, 729, 784, 841, 128, 48, 900, 961, 45, 10, 24, 1024, 162, 1089, 75, 1156, 200, 1225, 1296
Offset: 1

Views

Author

Rémy Sigrist, Jul 13 2024

Keywords

Comments

This sequence is a self-inverse permutation of the positive integers with infinitely many fixed points.

Examples

			For n = 84: 84 = 2^2 * A005117(14), so a(84) = 14^2 * A005117(2) = 392.
		

Crossrefs

See A374611 for a similar sequence.

Programs

  • PARI
    \\ See Links section.

Formula

a(A249327(n, k)) = A249327(k, n).
a(n) = n iff n = k^2 * A005117(k) for some k > 0.
Showing 1-4 of 4 results.