A249337 a(1) = 1, a(2) = 2; for n>2, a(n) = number of values k in range 1 .. n-1 such that {sum of prime indices in the prime factorization of a(k)} = {sum of prime indices in the prime factorization of a(n-1)}, both counted with multiplicity.
1, 2, 1, 2, 2, 3, 1, 3, 2, 4, 3, 4, 5, 1, 4, 6, 2, 5, 3, 7, 1, 5, 4, 8, 5, 6, 7, 2, 6, 8, 9, 3, 9, 4, 10, 5, 10, 6, 11, 1, 6, 12, 7, 8, 13, 1, 7, 9, 10, 11, 2, 7, 12, 13, 2, 8, 14, 3, 11, 4, 12, 14, 5, 15, 6, 16, 15, 7, 16, 17, 1, 8, 17, 2, 9, 18, 8, 18, 9, 19, 1, 9, 20, 10, 21, 3, 13, 4, 14, 11, 12, 22, 5, 19, 2, 10, 23, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12580
Crossrefs
Programs
-
PARI
A049084(n) = if(isprime(n), primepi(n), 0); \\ This function from Charles R Greathouse IV A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * A049084(f[i,1]))); } A249337_write_bfile(up_to_n) = { my(counts, n, a_n); counts = vector(up_to_n); a_n = 1; for(n = 1, up_to_n, write("b249337.txt", n, " ", a_n); counts[1+A056239(a_n)]++; if(1 == n, a_n = 2, a_n = counts[1+A056239(a_n)])); }; A249337_write_bfile(12580);
-
Scheme
;; With memoization-macro definec from Antti Karttunen's IntSeq-library. (definec (A249337 n) (if (<= n 2) n (let ((s (A056239 (A249337 (- n 1))))) (let loop ((i (- n 1)) (k 0)) (cond ((zero? i) k) ((= (A056239 (A249337 i)) s) (loop (- i 1) (+ k 1))) (else (loop (- i 1) k))))))) ;; Slow, quadratic time implementation.