A249345 The exponent of the highest power of 5 dividing the product of the elements on the n-th row of Pascal's triangle.
0, 0, 0, 0, 0, 4, 3, 2, 1, 0, 8, 6, 4, 2, 0, 12, 9, 6, 3, 0, 16, 12, 8, 4, 0, 44, 38, 32, 26, 20, 43, 36, 29, 22, 15, 42, 34, 26, 18, 10, 41, 32, 23, 14, 5, 40, 30, 20, 10, 0, 88, 76, 64, 52, 40, 82, 69, 56, 43, 30, 76, 62, 48, 34, 20, 70, 55, 40, 25, 10, 64, 48, 32, 16, 0
Offset: 0
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000 (terms 0..3124 from Antti Karttunen).
- Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.
Programs
-
Mathematica
A249345[n_] := Sum[#*((#+1)*5^k - n - 1) & [Floor[n/5^k]], {k, Floor[Log[5, n]]}]; Array[A249345, 100, 0] (* Paolo Xausa, Feb 11 2025 *)
-
PARI
allocatemem(234567890); A249345(n) = sum(k=0, n, valuation(binomial(n, k), 5)); for(n=0, 3124, write("b249345.txt", n, " ", A249345(n)));
-
Scheme
(define (A249345 n) (A112765 (A001142 n)))
-
Scheme
(define (A249345 n) (add (lambda (n) (A112765 (A007318 n))) (A000217 n) (A000096 n))) (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
Formula
a(n) = Sum_{k=0..n} A112765(binomial(n,k)).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_5(i), where v_5(i) = A112765(i) is the exponent of the highest power of 5 dividing i. - Ridouane Oudra, Jun 02 2022
a(n) = Sum_{k=1..floor(log_5(n))} t*((t+1)*5^k - n - 1), where t = floor(n/(5^k)). - Paolo Xausa, Feb 11 2025, derived from Ridouane Oudra's formula above.