cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249345 The exponent of the highest power of 5 dividing the product of the elements on the n-th row of Pascal's triangle.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 3, 2, 1, 0, 8, 6, 4, 2, 0, 12, 9, 6, 3, 0, 16, 12, 8, 4, 0, 44, 38, 32, 26, 20, 43, 36, 29, 22, 15, 42, 34, 26, 18, 10, 41, 32, 23, 14, 5, 40, 30, 20, 10, 0, 88, 76, 64, 52, 40, 82, 69, 56, 43, 30, 76, 62, 48, 34, 20, 70, 55, 40, 25, 10, 64, 48, 32, 16, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Crossrefs

Programs

  • Mathematica
    A249345[n_] := Sum[#*((#+1)*5^k - n - 1) & [Floor[n/5^k]], {k, Floor[Log[5, n]]}];
    Array[A249345, 100, 0] (* Paolo Xausa, Feb 11 2025 *)
  • PARI
    allocatemem(234567890);
    A249345(n) = sum(k=0, n, valuation(binomial(n, k), 5));
    for(n=0, 3124, write("b249345.txt", n, " ", A249345(n)));
    
  • Scheme
    (define (A249345 n) (A112765 (A001142 n)))
    
  • Scheme
    (define (A249345 n) (add (lambda (n) (A112765 (A007318 n))) (A000217 n) (A000096 n)))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))

Formula

a(n) = A112765(A001142(n)).
a(n) = Sum_{k=0..n} A112765(binomial(n,k)).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_5(i), where v_5(i) = A112765(i) is the exponent of the highest power of 5 dividing i. - Ridouane Oudra, Jun 02 2022
a(n) = Sum_{k=1..floor(log_5(n))} t*((t+1)*5^k - n - 1), where t = floor(n/(5^k)). - Paolo Xausa, Feb 11 2025, derived from Ridouane Oudra's formula above.