A249347 The exponent of the highest power of 7 dividing the product of the elements on the n-th row of Pascal's triangle.
0, 0, 0, 0, 0, 0, 0, 6, 5, 4, 3, 2, 1, 0, 12, 10, 8, 6, 4, 2, 0, 18, 15, 12, 9, 6, 3, 0, 24, 20, 16, 12, 8, 4, 0, 30, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 90, 82, 74, 66, 58, 50, 42, 89, 80, 71, 62, 53, 44, 35, 88, 78, 68, 58, 48, 38, 28, 87, 76, 65, 54, 43, 32, 21, 86, 74, 62, 50, 38, 26, 14, 85, 72, 59, 46, 33, 20, 7, 84, 70, 56, 42, 28, 14, 0
Offset: 0
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000 (terms 0..2400 from Antti Karttunen).
- Jeffrey C. Lagarias and Harsh Mehta, Products of binomial coefficients and unreduced Farey fractions, arXiv:1409.4145 [math.NT], 2014.
Programs
-
Mathematica
A249347[n_] := Sum[#*((#+1)*7^k - n - 1) & [Floor[n/7^k]], {k, Floor[Log[7, n]]}]; Array[A249347, 100, 0] (* Paolo Xausa, Feb 08 2025 *)
-
PARI
allocatemem(234567890); A249347(n) = sum(k=0, n, valuation(binomial(n, k), 7)); for(n=0, 2400, write("b249347.txt", n, " ", A249347(n)));
-
Scheme
(define (A249347 n) (A214411 (A001142 n)))
-
Scheme
(define (A249347 n) (add (lambda (n) (A214411 (A007318 n))) (A000217 n) (A000096 n))) (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
Formula
a(n) = Sum_{k=0..n} A214411(binomial(n,k)).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_7(i), where v_7(i) = A214411(i) is the exponent of the highest power of 7 dividing i. - Ridouane Oudra, Jun 03 2022
a(n) = Sum_{k=1..floor(log_7(n))} t*((t+1)*7^k - n - 1), where t = floor(n/(7^k)). - Paolo Xausa, Feb 09 2025, derived from Ridouane Oudra's formula above.