A249354 a(n) = n*(3*n^2 + 3*n + 1).
0, 7, 38, 111, 244, 455, 762, 1183, 1736, 2439, 3310, 4367, 5628, 7111, 8834, 10815, 13072, 15623, 18486, 21679, 25220, 29127, 33418, 38111, 43224, 48775, 54782, 61263, 68236, 75719, 83730, 92287, 101408, 111111, 121414, 132335, 143892, 156103, 168986
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A132355: numbers m such that 9*m + 1 is a square.
Programs
-
Mathematica
Table[n (3 n^2 + 3 n + 1), {n, 0, 38}] (* or *) CoefficientList[Series[x (7 + 10 x + x^2)/(x - 1)^4, {x, 0, 38}], x] (* Michael De Vlieger, May 23 2017 *)
-
PARI
A249354(n)=3*n^3+3*n^2+n
Formula
G.f.: x*(7+10*x+x^2) / (x-1)^4 . - R. J. Mathar, Oct 28 2014
a(n) = n*A003215(n). - R. J. Mathar, Oct 28 2014
Comments