cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A249354 a(n) = n*(3*n^2 + 3*n + 1).

Original entry on oeis.org

0, 7, 38, 111, 244, 455, 762, 1183, 1736, 2439, 3310, 4367, 5628, 7111, 8834, 10815, 13072, 15623, 18486, 21679, 25220, 29127, 33418, 38111, 43224, 48775, 54782, 61263, 68236, 75719, 83730, 92287, 101408, 111111, 121414, 132335, 143892, 156103, 168986
Offset: 0

Views

Author

M. F. Hasler, Oct 26 2014

Keywords

Comments

The series Sum a(n)/A007559(n+1)^3 has the sum 1/9 (cf. A249352), analogous to Sum_{n=1..oo} A000217(n)/A001147(n+1)^2 = 1/8 (cf. A249348 and A249349).
Also, nonnegative numbers m such that 9*m + 1 is a cube. - Bruno Berselli, May 23 2017

Crossrefs

Cf. A132355: numbers m such that 9*m + 1 is a square.

Programs

  • Mathematica
    Table[n (3 n^2 + 3 n + 1), {n, 0, 38}] (* or *)
    CoefficientList[Series[x (7 + 10 x + x^2)/(x - 1)^4, {x, 0, 38}], x] (* Michael De Vlieger, May 23 2017 *)
  • PARI
    A249354(n)=3*n^3+3*n^2+n

Formula

G.f.: x*(7+10*x+x^2) / (x-1)^4 . - R. J. Mathar, Oct 28 2014
a(n) = n*A003215(n). - R. J. Mathar, Oct 28 2014
Showing 1-1 of 1 results.