cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249386 Decimal expansion of the constant 'a' appearing in the asymptotic expression of the number of plane partitions of n as a*n^(-25/36)*exp(b*n^(2/3)).

Original entry on oeis.org

2, 3, 1, 5, 1, 6, 8, 1, 3, 4, 4, 8, 8, 9, 8, 3, 7, 0, 5, 6, 0, 3, 5, 6, 4, 0, 6, 4, 0, 6, 3, 3, 2, 1, 1, 0, 8, 5, 5, 1, 2, 9, 2, 1, 2, 5, 9, 3, 2, 8, 7, 9, 2, 6, 5, 9, 7, 9, 4, 4, 5, 2, 4, 1, 7, 6, 7, 3, 9, 6, 6, 5, 4, 3, 9, 4, 4, 2, 0, 2, 2, 7, 4, 5, 1, 2, 7, 5, 3, 1, 9, 7, 2, 3, 2, 5, 3, 0, 3, 0, 2, 3, 6, 6
Offset: 0

Views

Author

Jean-François Alcover, Oct 27 2014

Keywords

Comments

The paper by Finch contains an error: the denominator should be sqrt(3*Pi), not sqrt(Pi). The constant 0.4009988836 is wrong. The formula in A000219 and the article by L. Mutafchiev and E. Kamenov (page 6) is correct. - Vaclav Kotesovec, Oct 27 2014. [In new version of prt.pdf is already corrected. - Vaclav Kotesovec, May 11 2015]

Examples

			0.231516813448898370560356406406332110855129212593287926597944524...
		

Crossrefs

Programs

  • Mathematica
    a = Zeta[3]^(7/36)*Exp[Zeta'[-1]]/(2^(11/36)*Sqrt[3*Pi]); RealDigits[a, 10, 104] // First

Formula

Equals zeta(3)^(7/36)*exp(zeta'(-1))/(2^(11/36)*sqrt(3*Pi)).
Equals exp(1/12) * A002117^(7/36) / (A074962 * 2^(11/36) * sqrt(3*Pi)). - Vaclav Kotesovec, Mar 02 2015