cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249434 Integers m such that m! divides the product of elements on row m of Pascal's triangle.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 35, 36, 39, 40, 42, 46, 52, 58, 60, 62, 66, 70, 72, 78, 79, 82, 83, 88, 89, 96, 100, 102, 104, 106, 107, 108, 112, 126, 130, 131, 136, 138, 143, 148, 149, 150, 153, 156, 159, 162, 164, 166, 167, 172, 174, 175, 178, 179, 180, 181, 190, 192, 194, 196, 197, 198, 199, 207, 209, 210, 219, 222, 226, 228, 232, 238, 240, 250, 256
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2014

Keywords

Comments

Integers m such that A249151(m) >= m.
Equally: Integers m such that A249431(m) is nonnegative.
It seems that A006093 gives all those k for which A249151(k) = k. If that is true, then this is a disjoint union of A006093 and A249429.

Examples

			0! = 1 divides the product of binomial coefficients on row 0 of A007318, namely {1}, thus a(1) = 0.
1! = 1 divides the product of row 1 (1*1), thus a(2) = 1.
2! = 2 divides the product of row 2 (1*2*1), thus a(3) = 2.
3! = 6 does not divide the product of row 3 (1*3*3*1), but 4! = 24 divides the product of row 4 (1*4*6*4*1), as 96 = 4*24, thus a(4) = 4.
		

Crossrefs

Complement: A249433.
Subsequences: A006093 (conjectured), A249429, A249430, A249432.