A249475 E.g.f.: exp(2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} 2^n/Product_{k=1..n} (k - x^k).
1, 1, 5, 25, 156, 1048, 8400, 72384, 710184, 7519240, 87797880, 1098513880, 14945280640, 216079283040, 3352657547680, 55071779464352, 961293645943680, 17669716422651776, 342988501737128576, 6978772157389361280, 149123855108936024576, 3328674238745847019520
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 25*x^3/3! + 156*x^4/4! + 1048*x^5/5! +... such that A(x) = exp(2)*P(x) - Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and Q(x) = Sum_{n>=1} 2^n / Product_{k=1..n} (k - x^k). More explicitly, P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...); Q(x) = 2/(1-x) + 2^2/((1-x)*(2-x^2)) + 2^3/((1-x)*(2-x^2)*(3-x^3)) + 2^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 2^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +... We can illustrate the initial terms a(n) in the following manner. The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin: q(0) = 6.3890560989306502272... q(1) = 6.3890560989306502272... q(2) = 17.167168296791950681... q(3) = 56.279617088237152499... q(4) = 257.78714154011641272... q(5) = 1346.0541760535306736... q(6) = 8772.1663739148311280... q(7) = 63072.176405596679965... q(8) = 527808.01503923686167... q(9) = 4851990.6204200261720... and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin: A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...]; from which we can generate this sequence like so: a(0) = exp(2)*1 - q(0) = 1; a(1) = exp(2)*1 - q(1) = 1; a(2) = exp(2)*3 - q(2) = 5; a(3) = exp(2)*11 - q(3) = 25; a(4) = exp(2)*56 - q(4) = 156; a(5) = exp(2)*324 - q(5) = 1048; a(6) = exp(2)*2324 - q(6) = 8400; a(7) = exp(2)*18332 - q(7) = 72384; a(8) = exp(2)*167544 - q(8) = 710184; ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..100
Programs
-
PARI
\p100 \\ set precision {P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841 {Q=Vec(serlaplace(sum(n=1, 201, 2^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); } for(n=0, 30, print1(round(exp(2)*P[n+1]-Q[n+1]), ", "))
Comments