A249489 a(n) = [x^n/n!] Sum_{k=0..n} cosh(k*x)^k.
1, 0, 9, 0, 12070, 0, 126447741, 0, 5100496997940, 0, 562605048135059545, 0, 138523311740417986721274, 0, 66543520389763227261554370645, 0, 56664734898911130799849838608991176, 0, 79610326854782816434044397510470501877041
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..220
Programs
-
Mathematica
Flatten[{1,Table[Sum[Sum[Binomial[k,j] * k^n*(k-2*j)^n / 2^k,{j,0,k}],{k,0,n}],{n,1,20}]}]
-
PARI
{a(n)=n!*polcoeff(sum(k=0, n, cosh(k*x+x*O(x^n))^k), n)} for(n=0, 20, print1(a(n), ", "))
-
PARI
{a(n) = sum(k=0,n,sum(j=0,k, binomial(k, j) * k^n*(k-2*j)^n / 2^k ))} for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Oct 15 2018, using Vaclav's formula.
Formula
a(n) = Sum_{k=0..n} Sum_{j=0..k} binomial(k, j) * k^n * (k-2*j)^n / 2^k. [Explicitly stating Vaclav's formula in Mma program - Paul D. Hanna, Oct 15 2018]
If n is even, then a(n) ~ c * (1-2*r)^n * n^(2*n) / (2^n * exp(n) * (r*(1-r))^(n/2)), where r = 0.0832217201995176507819192648878903254298041... is the root of the equation (r/(1-r))^(1-2*r) = exp(-2), and c = 2.09233700490262732901066903251002074102409436600891921766318742438...
Extensions
Name clarified by Paul D. Hanna, Oct 15 2018