cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249492 Decimal expansion of rho(a,b), the cross-correlation coefficient of two sides of a random Gaussian triangle (in two dimensions).

Original entry on oeis.org

2, 3, 2, 5, 5, 9, 3, 4, 6, 5, 4, 3, 1, 7, 8, 2, 3, 4, 4, 7, 3, 0, 9, 0, 3, 5, 9, 7, 5, 0, 3, 3, 3, 8, 9, 9, 3, 1, 0, 4, 3, 5, 0, 1, 5, 4, 3, 5, 0, 2, 0, 4, 0, 9, 8, 8, 5, 9, 9, 4, 2, 1, 0, 5, 9, 7, 7, 6, 1, 7, 9, 9, 9, 1, 4, 9, 8, 0, 9, 1, 9, 1, 7, 5, 9, 5, 4, 5, 1, 2, 5, 4, 6, 9, 0, 8, 3, 8, 5, 2, 7, 8, 4
Offset: 0

Views

Author

Jean-François Alcover, Oct 30 2014

Keywords

Comments

Coordinates are independent normally distributed random variables with mean 0 and variance 1.

Examples

			0.23255934654317823447309035975033389931043501543502...
		

Crossrefs

Programs

  • Maple
    Re(evalf((4*EllipticE(1/2) - sqrt(3)*EllipticK(I/sqrt(3)) - Pi)/(4 - Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; rho = (p - Pi)/(4 - Pi); RealDigits[rho, 10, 103] // First
    RealDigits[(3 EllipticE[8/9] - Pi)/(4 - Pi), 10, 103][[1]] (* Jan Mangaldan, Nov 26 2020 *)

Formula

rho = (p - Pi)/(4 - Pi), where p is A249491, the expected value of the product of two sides.