A249492 Decimal expansion of rho(a,b), the cross-correlation coefficient of two sides of a random Gaussian triangle (in two dimensions).
2, 3, 2, 5, 5, 9, 3, 4, 6, 5, 4, 3, 1, 7, 8, 2, 3, 4, 4, 7, 3, 0, 9, 0, 3, 5, 9, 7, 5, 0, 3, 3, 3, 8, 9, 9, 3, 1, 0, 4, 3, 5, 0, 1, 5, 4, 3, 5, 0, 2, 0, 4, 0, 9, 8, 8, 5, 9, 9, 4, 2, 1, 0, 5, 9, 7, 7, 6, 1, 7, 9, 9, 9, 1, 4, 9, 8, 0, 9, 1, 9, 1, 7, 5, 9, 5, 4, 5, 1, 2, 5, 4, 6, 9, 0, 8, 3, 8, 5, 2, 7, 8, 4
Offset: 0
Examples
0.23255934654317823447309035975033389931043501543502...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Steven R. Finch, Random Triangles, January 21, 2010. [Cached copy, with permission of the author]
- Eric Weisstein MathWorld, Gaussian Triangle Picking
Programs
-
Maple
Re(evalf((4*EllipticE(1/2) - sqrt(3)*EllipticK(I/sqrt(3)) - Pi)/(4 - Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
-
Mathematica
p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; rho = (p - Pi)/(4 - Pi); RealDigits[rho, 10, 103] // First RealDigits[(3 EllipticE[8/9] - Pi)/(4 - Pi), 10, 103][[1]] (* Jan Mangaldan, Nov 26 2020 *)
Formula
rho = (p - Pi)/(4 - Pi), where p is A249491, the expected value of the product of two sides.
Comments