cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249512 Expansion of 1/(1-x*sqrt(4*x^2+1)-2*x^2).

Original entry on oeis.org

1, 1, 3, 7, 15, 33, 75, 169, 375, 835, 1875, 4203, 9375, 20931, 46875, 104919, 234375, 523737, 1171875, 2621545, 5859375, 13098001, 29296875, 65523597, 146484375, 327500413, 732421875, 1637918089
Offset: 0

Views

Author

Vladimir Kruchinin, Oct 31 2014

Keywords

Programs

  • Maple
    # Using function CompInv from A357588.
    1, CompInv(27, n -> simplify(GegenbauerC(n-1, 1-n, 3/2))); # Peter Luschny, Oct 05 2022
  • Mathematica
    CoefficientList[Series[1/(1-x*Sqrt[4*x^2+1]-2*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 31 2014 *)
  • Maxima
    a(n) := if n=0 then 1  else sum(k*4^(n-k)*binomial(n/2,n-k),k,1,n)/n;
    
  • Sage
    def a(n):
        if is_odd(n):
            return simplify((4^(n-1)*binomial(n/2, n-1)*hypergeometric([2, 1-n], [2-n/2], -1/4))/n)
        return 3*5^(n//2-1) if n>0 else 1
    [a(n) for n in (0..27)] # Peter Luschny, Oct 31 2014

Formula

a(n) = sum(k = 1..n, k*4^(n-k)*binomial(n/2,n-k))/n, a(0)=1.
a(n) ~ 3 * 5^(n/2-1). - Vaclav Kotesovec, Oct 31 2014
a(n) = 3 * 5^(n/2-1) if n is even and n>0 else a(n) = ((4^(n-1)* binomial(n/2, n-1)*hypergeometric([2, 1-n],[2-n/2], -1/4))/n). - Peter Luschny, Oct 31 2014
D-finite with recurrence: (-n+1)*a(n) +(-n+2)*a(n-1) +(n+11)*a(n-2) +(n+10)*a(n-3) +20*(n-4)*a(n-4) +20*(n-5)*a(n-5)=0. - R. J. Mathar, Jan 25 2020