A249544 Array read by antidiagonals: T(m,n) read in binary is a palindrome with m runs of n ones separated by single zeros.
1, 3, 5, 7, 27, 21, 15, 119, 219, 85, 31, 495, 1911, 1755, 341, 63, 2015, 15855, 30583, 14043, 1365, 127, 8127, 128991, 507375, 489335, 112347, 5461, 255, 32639, 1040319, 8255455, 16236015, 7829367, 898779, 21845, 511, 130815, 8355711
Offset: 1
Examples
Array starts: Binary: n 1 2 3 4 5 m 1 1 3 7 15 31 1 11 111 2 5 27 119 495 2015 101 11011 1110111 3 21 219 1911 15855 128991 10101 11011011 11101110111 4 85 1755 30583 507375 8255455 5 341 14043 489335 16236015 528349151
Links
- Tilman Piesk, First 113 rows of the triangle, flattened
Programs
-
PHP
A249544($m, $n) { // a b c // ( 2^(n+1)^m -1 ) * ( 2^n -1 ) / ( 2^(n+1) -1 ) $a = gmp_sub( gmp_pow( gmp_pow(2,$n+1), $m ), 1 ); $b = gmp_sub( gmp_pow(2,$n), 1 ); $c = gmp_sub( gmp_pow(2,$n+1), 1 ); $return = gmp_div_q( gmp_mul($a,$b), $c ); return gmp_strval($return); }
Formula
T(m,n) = ( 2^(n+1)^m -1 ) * ( 2^n -1 ) / ( 2^(n+1) -1 ).
Comments