cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249550 Numbers m such that there are precisely 7 groups of order m.

Original entry on oeis.org

375, 605, 903, 1705, 2255, 2601, 2667, 3081, 3355, 3905, 3993, 4235, 4431, 4515, 4805, 5555, 6123, 6355, 6375, 6765, 7077, 7205, 7865, 7917, 7959, 8305, 8405, 8625, 8841, 9455, 9723, 9933, 9955, 10285, 10505, 10875, 11005, 11487, 11495, 11571, 11605, 11715, 11935, 12207, 12505, 13005, 13053, 13251, 13255, 13335, 13805, 14133
Offset: 1

Views

Author

N. J. A. Sloane, Nov 01 2014

Keywords

Examples

			For m = 375, the 7 groups are C375, ((C5 x C5) : C5) : C3, C75 x C5, C3 x ((C5 x C5) : C5), C3 x (C25 : C5), C5 x ((C5 x C5) : C3), C15 x C5 x C5 and for n = 605 the 7 groups are C121 : C5, C605, C11 x (C11 : C5), (C11 x C11) : C5, (C11 x C11) : C5, (C11 x C11) : C5, C55 x C11, where C means Cyclic group and the symbols x and : mean direct and semidirect products respectively. - _Muniru A Asiru_, Nov 11 2017
		

Crossrefs

Cf. A000001. Cyclic numbers A003277. Numbers m such that there are precisely k groups of order m: A054395 (k=2), A055561 (k=3), A054396 (k=4), A054397 (k=5), A135850 (k=6), this sequence (k=7), A249551 (k=8), A249552 (k=9), A249553 (k=10), A249554 (k=11), A249555 (k=12), A292896 (k=13), A294155 (k=14), A294156 (k=15), A295161 (k=16), A294949 (k=17), A298909 (k=18), A298910 (k=19), A298911 (k=20).

Programs

  • Mathematica
    Warning: The Mma command Select[Range[10^5], FiniteGroupCount[#]==7 &]  gives wrong answers, since FiniteGroupCount[2601] does not return 7. - N. J. A. Sloane, Apr 11 2020

Formula

Sequence is { m | A000001(m) = 7 }. - Muniru A Asiru, Nov 11 2017

Extensions

More terms from Muniru A Asiru, Oct 22 2017
Missing terms added by Muniru A Asiru, Nov 12 2017